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Gene expression signatures from whole
blood predict amyotrophic lateral sclerosis
case status and survival

Yue Zhao 1, Masha G. Savelieff 2, Xiayan Li1, Kai Guo 3,4, Kai Wang1,
Minghua Li 1, Bo Li 1, Gayatri Iyer1, Stacey A. Sakowski 3,4, Lili Zhao 5,
Samuel J. Teener 4, Kelly M. Bakulski 6, John F. Dou6, Bryan J. Traynor 7,8,
Alla Karnovsky1, Stuart A. Batterman9, Junguk Hur 2, Stephen A. Goutman 3,4,
Maureen A. Sartor 1,10,11 & Eva L. Feldman 3,4,11

Amyotrophic lateral sclerosis (ALS) is a rare and fatal neurodegenerative dis-
easewith amedian survival of only 2 to 4 years fromdiagnosis. Improved tools
are needed to shorten diagnostic delays and improve prognostication to
benefit clinical care. Herein, we profiled whole blood gene expression by RNA
sequencing in a large cohort of ALS participants (n = 422) versus controls
(n = 272). Several machine learning classifiers trained on our detailed gene
expressiondataset accurately predicted case-control status, including in a fully
independent external test cohort, achieving an area under the receiver oper-
ating characteristic curve of0.894with thebest performingmodel. Integrating
gene expression features with clinical variables improved our ability to dis-
criminate ALS cases into shorter, intermediate, and longer survival in an
external dataset. Finally, we identified ALS-relevant pathways in our blood
transcriptomics dataset as well as “core genes” that overlapped with gene
expression changes occurring in the primary disease tissue, facilitating a drug
perturbation analysis that identified several candidates. Overall, our results
highlight the potential diagnostic and prognostic applications of whole blood
gene expression data, with important implications for improving ALS clin-
ical care.

ALS is a progressive, fatal, neurodegenerative disease with a median
survival of only 2 to 4 years from diagnosis. ALS remains difficult to
identify in routine clinical practice1,2. Patients manifest symptoms
and signs like other more common illnesses3 and misdiagnoses and
errors are relatively frequent4. The median time to a definitive ALS

diagnosis is 5 to 15months, depending on subtype, and can even take
up to 19 months for some patients5. This diagnostic delay postpones
treatment, which adversely affects survival since earlier initiation
with standard-of-care riluzole6 and multidisciplinary care7 improves
clinical outcomes. Moreover, delayed diagnoses exclude many
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patients from ALS trials, which usually recruit participants with less
advanced disease, and also leaves patients with less time to organize
their financial, legal, psychological, and spiritual affairs.

While improved diagnostic approaches are urgently needed to
shorten diagnostic delays for ALS patients, no ideal biomarkers have
been developed for ALS. The frontrunner is neurofilament light
chain (NfL), and both serum and cerebrospinal fluid (CSF) NfL levels
are significantly higher in ALS patients versus controls and increase
in presymptomatic at-risk individuals as they develop ALS8. Never-
theless, NfL has a critical shortcoming as a biomarker. As an indi-
cator of neuronal damage, NfL levels are also elevated in other
diseases, such as mild cognitive impairment9, Alzheimer’s disease10,
Parkinson’s disease11, multiple sclerosis12, diabetic peripheral
neuropathy13, various additional neurodegenerative illnesses14, and
even all-cause mortality15. Thus, NfL lacks specificity as an ALS
diagnostic tool.

In lieu of assessing a single biomarker measure, gene tran-
scriptomic profiles are feasible as clinical tools with commercial via-
bility. The PAM50 is a U.S. Food and Drug Administration (FDA)-
cleared gene expression biomarker panel that leverages the expres-
sion of 50 genes to classify breast tumor subtypes16,17. A recently
developed 18-gene qPCR array can diagnose high-grade prostate can-
cer from biofluid samples18. Gene signatures that predict ALS case-
control status based on whole blood are also reported in the
literature19–21, but only one was tested in an independent external

dataset and performed poorly (63.3% accuracy, 60.0% sensitivity,
66.7% specificity, 64.7% area under the curve [AUC])21. The perfor-
mance and accuracyof theother reported gene signatures19,20 werenot
tested in independent external datasets, rendering their use as diag-
nostic ALS biomarker panels uncertain.

The goal of the current study was to develop a gene classifier as a
future ALS biomarker panel to expedite ALS diagnosis. We profiled
gene expression from accessible whole blood samples from a large
cohort of ALS cases versus controls. We employed RNA sequencing
(RNA-seq), detecting over 22,000 protein-coding genes, long non-
coding RNAs, and microRNAs. We leveraged this rich and detailed
gene expression dataset to evaluate the ability of blood gene expres-
sion to differentiate ALS cases from controls, finding high accuracy
using variousmachine learning classifiers. Thebest classifier could also
predict case-control status in a fully independent external test
cohort21.

We extended this success in two ways. First, we integrated gene
features with clinical variables to enhance ALS survival prediction,
addressing another unmet need in the field. Second, we performed
pathway enrichment analysis of our blood transcriptomics dataset,
which revealed ALS-relevant pathways. We selected “core genes” that
overlapped with differentially expressed genes (DEGs) in the primary
disease tissue and then used these core genes as input for drug per-
turbation analysis, which identified drug candidates for evaluation as
future ALS therapies.

Fig. 1 | Study design overview. a Blood samples collected from cases and controls
were processed for RNA-seq. b Differentially expressed genes (DEGs) in ALS cases
(n =422) versus controls (n= 272) were identified using both a primary (unadjusted)
and an adjusted analysis for immune cell proportions. c (i) ALS case-control classifier:
Comparison of seven machine learning (ML) algorithms (Part 1); Improving the
performance of the best-performing ML algorithm XGBoost (Part 2); Testing the
three gene panels plus a combined 46-gene panel on our internal and the external
Grima et al.21 datasets (Parts 3 and 4, respectively). Results shown in Fig. 3. (ii) ALS
case survival classifier: Criteria applied for gene filtering (Part 1); Training two ML
algorithms, XGBoost and stepwise, using gene featureswith clinical variables (Part 2);
Comparing XGBoost and stepwise (gene features + clinical variables) to a clinical

variables only model in our internal and the external Grima et al.21 datasets (Parts 3
and 4, respectively). Results shown in Fig. 4. (iii) Pathway analysis to identify ALS
disease signature in blood: Kyoto Encyclopedia of Genes and Genomes, Hallmark,
and Gene Ontology pathway enrichment of primary DEGs (Part 1); Analyses on DEGs
adjusted for cell proportions (Part 2); Pathway analyses of adjusted versus primary
DEGs (Parts 3, 4). Results shown in Fig. 5. (iv) Drug perturbation analysis to identify
ALS therapeutic candidates: Identification of “core genes” of adjusted and primary
DEGs that overlap with DEGs from induced pluripotent stem cell (iPSC)-derived
neurons with TDP-43 knockdown and ALS postmortem spinal cord (Part 1); Drug
perturbation analysis of “core genes” (Part 2). Results shown in Fig. 6. Created in
BioRender. Feldman, E. (2025) https://BioRender.com/zpmd31u.
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Results
Cohort characteristics
We profiled whole blood by RNA-seq from ALS cases (n = 422) versus
controls (n = 272) (Fig. 1a; Table 1). Participants with ALS were old-
er (median 65 versus 61 years, p < 0.001) with more males (58%
versus 44%, p < 0.001) compared to controls. The ALS cohort
exhibited typical disease characteristics with a median age of 65
years and a male-to-female ratio of 1.3822. 87% cited no known family
history. Most were C9orf72 hexanucleotide repeat expansion

negative (64%) or unknown (30%). ALS participants were 26% bulbar,
32% cervical, and 39% lumbar, similar to prior cohorts23, with a
median ALS functional rating scale, revised (ALSFRS-R) score of 37
(range 32 to 41), indicating a moderate level of functional
impairment.

A gene expression signature differentiates ALS cases from
controls
Overall, we identified 3,640DEGs inALS cases (n = 422) versus controls
(n = 272), of which 1999 were upregulated and 1641 downregulated in
ALS (Fig. 1b). As expected in ALS24–26, many DEGs were related to the
immune system, e.g., IL2RB, S100A8, S100A9, S100A12. The large
sample size allowedus toperforma sex-stratifiedDEGanalysis inmales
(n = 365) and females (n = 329), which identified a similar number of
up- and downregulated genes in ALS and aligned with reported sex
differences in ALS in immune cell levels and activation state24–26.
(Fig. 2a, Supplementary Data 1). Although most DEGs overlapped
between males and females, several deviated in their effect size, i.e.,
log2 fold-change (Fig. 2b), most generally of low expression. Among
DEGs deviating by sex, some had relevance to ALS, including the U1
small nuclear RNA in FUS mutant ALS27, the environmental toxin
detoxifier GSTM5, and RGS17, a regulator of G protein protein-coupled
receptor signaling cascades, including the muscarinic acetylcholine
receptor and dopamine receptor28.

The top 10 up- and 10 downregulated DEGs in ALS clearly dif-
ferentiated ALS cases from controls (Fig. 2c), highlighting a distinct
transcriptomic ALS signature, both in males and females.
There were several interesting candidates among the top upregu-
lated DEGs, including an E3 ubiquitin ligase (MARCHF7), vesicular
and endosomal trafficking proteins (SNX13, RAB8B, ZFYVE16),
autophagy proteins (VMP1), and muscle proteins (CAPZA1,
CAPZA2). Among ALS downregulated DEGs were candidates linked
to epigenetics (DNMT1, EP400), inflammation (ILF3), and apopto-
sis (MADD).

Next, we compared our DEGs to the published datasets on ALS
whole blood transcriptomics. The first comprises ALS cases (n = 396)
and controls (n = 645) by microarray, originally collected by van
Rheenen et al.19 and reanalyzed by Swindell et al.20; sincewe compared
our DEGs to the Swindell DEGs, we refer to it hereon as the “Swindell”
dataset. The second published dataset comprises ALS cases (n = 86)
and controls (n = 48) profiled by RNA-seq by Grima et al.21 (Supple-
mentary Data 2). Wematched 1928 of our DEGs based on gene symbol
to literature DEGs. Of our upregulated ALS DEGs, 381 and 39 over-
lapped with approximately 50% of Swindell and 46% of Grima DEGs,
respectively (Fig. 2d). The extent of overlap was lower among down-
regulated DEGs, with only 267 shared with Swindell (35%) and 56 with
Grima (35%) (Fig. 2e). Nevertheless, both upregulated and down-
regulated Swindell DEGs were significantly enriched among our
upregulated (odds ratio 3.46 [95% confidence interval (CI): 3.03, Inf],
p = 1.31 × 10−54) and downregulated (odds ratio 2.13 [95%CI: 1.86, Inf],
p = 2.22 × 10−19) DEGs, respectively (Supplementary Fig. S1a). Addi-
tionally, upregulated and downregulated Grima DEGs were sig-
nificantly enriched among our upregulated (odds ratio 4.44 [95%CI:
3.02, Inf], p = 1.26 × 10−10) and downregulated (odds ratio 3.48 [95%CI:
2.60, Inf], p = 5.71 × 10−12) DEGs, respectively (Supplementary Fig. S1b).
The DEGs consistent across the three studies were enriched with
“Alzheimer’s disease”, as well as other relevant terms, including “IL-
17 signaling pathway”, “autophagy – animal”, “mTORC1 signaling”, and
“interferon alpha response”. Among neurodegenerative disease path-
ways, “Parkinson disease”, “oxidative phosphorylation”, and relevant
immune pathways were uniquely enriched in our DEGs (Supplemen-
tary Fig. S1c).

Shared DEGs had higher average expression (Fig. 2f) and sig-
nificance (Fig. 2g). Although shared DEGs were relatively independent
of extent of fold-change (Fig. 2h) there was a strong correlation of our

Table 1 | Clinical characteristics of ALS and control partici-
pants in primary study cohort

ALS
cases,
n = 422

Controls,
n = 272

p-value

Age at blood draw (years) 65.00
(57.00,
71.75)

61.00
(54.00, 66.25)

3.03 × 10−6

Sex 7.89 × 10−4

Female 178 (42%) 151 (56%)

Male 244 (58%) 121 (44%)

Race 0.39

White 404 (96%) 254 (93%)

Black 12 (3%) 12 (4%)

Other 6 (1%) 6 (2%)

Family history of ALS 2.28 × 10−28

Yes 41 (10%) 0 (0%)

No 367 (87%) 272 (100%)

Unknown 14 (3%) 0 (0%)

Revised El Escorial criteria
at diagnosis

Definite 110 (26%)

Probable 126 (30%)

Probable, lab supported 104 (25%)

Possible 54 (13%)

Suspected 22 (5%)

Unknown 6 (1%)

Onset segment

Bulbar 109 (26%)

Cervical 135 (32%)

Lumbar 164 (39%)

Respiratory 4 (1%)

Thoracic 7 (2%)

Generalized / Cannot be
determined

2 (0%)

Unknown 1 (0%)

C9orf72 hexanucleotide
repeat expansion status

5.98 × 10−4

Negative 268 (64%) 147 (54%)

Unknown 126 (30%) 125 (46%)

Intermediate 1 (0%) 0 (0%)

Positive 27 (6%) 0 (0%)

ALSFRS-R Score 37 (32, 41)

Unknown 2

Time from diagnosis to
blood draw (months)

5.31
(3.27, 9.07)

Unknown 4

Time from symptom onset
to diagnosis (months)

12.68
(7.97, 22.01)

Unknown 3

Median (25%,75%); n (%); two-sided Wilcoxon rank sum test; Pearson’s Chi-squared test.
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DEGs to published DEGs (Supplementary Fig. S2a). DEG features did
not differ whether they were up- or downregulated (Supplementary
Fig. S2b–d). OverlappingDEGswere less likely to differ in effect size by
sex (Supplementary Fig. S2e). Finally, to confirm our RNA-seq results,
we selected a new, independent cohort of 29 ALS and 27 control par-
ticipants (Table 2) and performed whole blood qPCR of 5 genes
upregulated in ALS, chosen based on altered expression and biological
relevance. Fold-changes in gene expression in ALS versus controls by
qPCR were similar to fold-changes by RNA-seq (B2M, CAPZA1, RPS18,
TNFSF10, TPT1; Supplementary Fig. S3). Overall, qPCR verified gene
expression changes in ALS relative to controls by RNA-seq, validating
our transcriptomic dataset.

A gene expression signature predicts ALS case status
Since ALS (n = 422) and control (n = 272) transcriptomes differed
substantially, we next evaluated how well gene expression could
predict case-control status (Fig. 1c, i). We compared the performance
of seven machine learning algorithms, ridge, LASSO, elastic net, L1/2,
SCAD, MCP, and XGBoost29, trained on gene expression data from
ALS cases (n = 296) and controls (n = 191) and tested using receiver
operating characteristic (ROC) curve AUCs (ALS cases, n = 126; con-
trols, n = 81). XGBoost had the significantly highest detection accu-
racy (DeLong’s test between XGBoost and elastic net: Z = 2.62,
p = 0.0087, ΔAUC 0.044 [95%CI: 0.011, 0.076]), with the largest AUC
of 0.91 and, thus, was chosen for the next step (Supplementary
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Fig. S4), although other algorithms also achieved good prediction
accuracy, e.g., elastic net (AUC 0.87), LASSO (AUC 0.85), and ridge
(AUC 0.84).

Next, we refined XGBoost, by first identifying input DEGs with
false discovery rate (FDR) and average log2 of gene expression
(AvExpr) that best discriminate ALS cases from controls using our full
training cohort. Theultimate goal was to assess thepredictive ability of
XGBoost on a limited set of DEGs to assign case-control status on an
independent, external testing cohort. We retrained XGBoost on three
groups of DEGs from our entire cohort (ALS cases, n = 422; controls,
n = 272) (Fig. 3a) filtered using the criteria FDR <0.01 (3,640 DEGs),
FDR <0.01 with AvExpr>0 (3,261 DEGs), and FDR <0.01 with AvExpr>2
(2,621 DEGs), yielding 27- (Fig. 3b), 30- (Fig. 3c), and 29-gene (Fig. 3d)
panels, respectively. As anticipated, DEGs that contributed strongly to
ALS case-control distinction were among the chosen top 20 DEGs
(Fig. 1c). Fourteen DEGs were shared by all gene panels, with fewer

DEGs shared by two panels, and some unique to each (Fig. 3e).We also
merged all three panels into a “combined” 46-DEG panel.

AUCs from internal testing ranged from 0.969 to 0.972, with
sensitivities from 93.2 to 94.2%, specificities from 86.0 to 87.9%, and
accuracies of 91.1 to 91.2%. The XGBoost classifier continued to per-
form well in the external Grima et al.21 test cohort, yielding an AUC of
0.894 from the combined gene panel (Fig. 3f, g). Additionally, we
externally evaluated our classifier in the van Rheenan et al.19 /Swindell
et al.20 cohort, attaining AUCs of 0.654 to 0.747 despite themicroarray
nature of the dataset, which also lacked 12 out of 46gene features from
our XGBoostmodels (Supplementary Fig. S5). Therefore, our classifier
showed potential as a diagnostic biomarker panel in this proof-of-
concept test.

A gene expression signature predicts ALS survival
Besides aiding diagnosis, biomarkers can also inform prognosis
(Fig. 1c, ii). We next appraised the ability of our models to predict ALS
survival, focusing on stepwise and XGBoost versus a “clinical” only
model of onset segment, symptom onset age, and sex (Fig. 4a). We
trained models using all our ALS cases with available survival data
(n = 420; Supplementary Data 3) and input of clinical variables and 575
genes filtered using stringent criteria [log-rank p-value < 0.01, average
count per million mapped reads >10, protein-coding genes only]. In
addition to all three clinical variables, stepwise and XGBoost selected
18 (Fig. 4b) and 8 (Fig. 4c) gene features, respectively, which had
among the highest and lowest hazard ratios (Supplementary Data 4).
However, onset segment and symptom onset age contributed most
significantly to stepwise and XGBoost, respectively.

Next, we predicted survival in thirty random train-test splits of our
internal dataset; compared to the clinical variables only model, step-
wise had significantly larger AUC values for years 2 to 8, whereas
XGBoost had higher AUCs for years 4 to 8 (Fig. 4d, Supplementary
Fig. S6a, Supplementary Data 5). In fact, gene onlymodels using the 18
stepwise- and 8 XGBoost-selected gene features significantly con-
tributed to survival prediction independent of the clinical variables
alone (Supplementary Fig. S6b). Our stepwise and XGBoost models
similarly generatednumerically largerAUCvalues for predicting 4-year
survival in the external Grima et al.21 dataset versus the clinical vari-
ablesmodel (Fig. 4e, Supplementary Fig. S7). Comparing concordance
index (C-index) between themodels, a common approach to compare
how well models predict the order of events, we found that XGBoost
(C-index=0.69) performed significantly better than the clinical vari-
ables only model (C-index=0.66; Z = 1.96, p = 0.050, ΔC=0.033 [95%
CI: 8.12 × 10−5, 6.51 × 10−2]), however the stepwise model performance
(C-index=0.65) did not significantly differ from the clinical variables
only model (Z = −0.26, p = 0.79, ΔC= −8.90 × 10−3 [95%CI: −0.076,
0.058]) (Supplementary Fig. S6c).

Subsequently, we classified the 86 Grima cases into predicted
shorter (top 25%), intermediate, and longer (bottom 25%) survival
based on median predicted survival score, calculated using clinical
variables only (clinical variables model) or combined clinical variables
and gene features (stepwise and XGBoost models) (Supplementary
Fig. S8). The clinical variables model predicted 1.11-year and 2.74-year
median survival differences between the predicted shorter- versus
intermediate- and intermediate- versus longer-surviving participants,
respectively (Fig. 4f). Stepwise predicted 1.31-year and 2.46-year
median survival differences between the predicted shorter- versus
intermediate- and intermediate- versus longer-surviving participants,
respectively (Fig. 4g), and performed the best at distinguishing the
three survival groups earlier in the disease. XGBoost predicted 1.31-
year and 3.20-year median survival differences between the predicted
shorter- versus intermediate- and intermediate- versus longer-
surviving participants, respectively (Fig. 4h). Overall, the XGBoost
model outperformed the clinical variables only model for differ-
entiating among survival groups in both the internal and external

Table 2 | Clinical characteristics of ALS and control partici-
pants in validation cohort

ALS cases, n = 29 Controls,
n = 27

p-value

Ageat blooddraw (years) 68.78
(62.87, 74.93)

68.52
(62.97, 74.71)

0.86

Sex 1

Female 11 (38%) 11 (41%)

Male 18 (62%) 16 (59%)

Race 0.38

White 27 (93%) 27 (100%)

Black 1 (3%) 0 (0%)

Other 1 (3%) 0 (0%)

Family history of ALS 0.5

Yes 2 (7%) 0 (0%)

No 27 (93%) 27 (100%)

Revised El Escorial cri-
teria at diagnosis

Definite 15 (52%)

Probable 9 (31%)

Probable, lab supported 5 (17%)

Possible 0 (0%)

Suspected 0 (0%)

Onset segment

Bulbar 10 (34%)

Cervical 10 (34%)

Lumbar 9 (31%)

Respiratory 0 (0%)

Thoracic 0 (0%)

Generalized / Cannot be
determined

0 (0%)

C9orf72 hexanucleotide
repeat expansion status

5.37 × 10−133

Negative 29 (100%) 0 (0%)

Intermediate / unknown 0 (0%) 27 (100%)

Positive 0 (0%) 0 (0%)

ALSFRS-R Score 39.00(35.00,
43.00)

Time from diagnosis to
blood draw (years)

1.78 (1.49, 2.41)

Time from symptom
onset to diagnosis (years)

1.00 (1.00, 2.00)

Unknown 1

Median(25%,75%); n (%); two-sided Wilcoxon rank sum exact test; Pearson’s Chi-squared test.
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Grima et al. datasets (Supplementary Fig. S6a,c). This wider difference,
reflecting a stronger overall distinction in survival classification by
XGBoost, incorporated gene features, versus the clinical variables only
model. Thus, although there was substantial overlap between the
models in assigning cases as shorter- (Fig. 4i) or longer-surviving
(Fig. 4j), there were differences, which would have important impli-
cations for patients.

Pathway analysis of the blood transcriptome reveals an ALS
disease signature
After demonstrating the diagnostic and prognostic potential of our
ALS blood transcriptomics dataset, we next performed pathway
enrichment to identify disease-related pathways with the goal of
creating an ALS disease signature observable in blood (Fig. 1c, iii). This
analysis leveraged the dataset of all ALS cases (n = 422) and controls
(n = 272). ALS is characterized by altered immune cell levels30 and
activation state31. Therefore, in addition to pathway enrichment of the
primary whole blood transcriptomic analysis, we also performed
enrichment of the transcriptomics dataset adjusted for cell type pro-
portions, i.e., for the relative abundance of different immune cell types
in the blood sample. This method extracts intrinsic, true biologically
relevant pathways, independent of altered cell levels in ALS. Several
methods exist to computationally adjust cell proportions, using DNA
methylation (DNAm) or RNA expression data, which can be compared

against experimentally measured cell proportions, e.g., flow cyto-
metry. In addition to transcriptomicsdata fromthis study, DNAm32 and
flow cytometry24–26 datasets were previously collected for this deeply
phenotyped cohort. We computed the different proportions of blood
cell types by DNAm (Supplementary Fig. S9a) and RNA expression
(Supplementary Fig. S9b) data, which we correlated to experimentally
measured cell proportions by flow cytometry for CD8 +T cells,
CD4 + T cells, NK cells, monocytes, and neutrophils. Correlations to
flow cytometry-measured cell proportions were stronger and more
significant when computed by DNAm than by RNA expression (Sup-
plementary Fig. S9c,d), making DNAm the adopted method.

Pathway enrichment using Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Hallmark terms of the primary whole blood
transcriptomic analysis identified several enriched upregulated neu-
rodegenerative pathways in ALS females versus control, including
“amyotrophic lateral sclerosis”, “Huntington disease”, and “Parkinson
disease.” When adjusted for cell proportions, these pathways were
more enriched and also appeared in ALSmales (Fig. 5a, Supplementary
Data 6). “Amyotrophic lateral sclerosis” was among the top upregu-
lated pathway in both ALS males (FDR= 8.27 × 10−3) and females
(FDR= 6.90e-10), suggesting that blood gene expression contains ALS-
relevant signatures. Other ALS-related pathways followed a similar
pattern, e.g., “oxidative phosphorylation”, “thermogenesis”33, and
“proteasome”. ALS-related “nucleocytoplasmic transport”, upregulated
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Fig. 3 | A gene expression signature predicts ALS case status. a XGBoost was
trained on filtered DEGs in ALS cases (n = 422) versus controls (n = 272) using the
criteria FDR<0.01 (3,640 DEGs), FDR <0.01 with AvExpr>0 (3,261 DEGs), and
FDR <0.01 with AvExpr>2 (2,621 DEGs), yielding 27-, 30-, and 29-gene panels,
respectively. Funnels created in BioRender. Feldman, E. (2025) https://BioRender.
com/56j577n. Candidate genes ranked by their importance to ALS case prediction
for the (b) 27-gene, (c) 30-gene, and (d) 29-gene panels. eOverlap in genes between

the three gene panels, including 14 shared by all models, presented by blue font in
panels b to d. f Performance metrics for predicting case status by the three gene
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et al.21 dataset.gArea under the receiveroperating characteristic curves (ROC-AUC)
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external Grima dataset.
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in ALS females, newly appeared after adjusting DEGs for cell propor-
tions, along with, interestingly, many immune and infection pathways,
e.g., “human cytomegalovirus infection”, “shigellosis” (Fig. 5b). Several
immune and infection pathways, e.g., “complement”, “interferon
gamma response”, disappeared after adjusting for cell propor-
tions (Fig. 5c).

Gene ontology (GO) pathway analysis of the DEGs from whole
blood revealed enriched upregulated pathways linked to RNA pro-
cessing and splicing, and energy production through the electron
transport chain, both relevant to ALS pathophysiology (Supple-
mentary Fig. S10, Supplementary Data 7). Adjusting for cell

proportions eliminated a few pathways, e.g., ion transport, glucose
catabolic processes (Supplementary Fig. S10b), while revealing new
ones, e.g., nucleotide and nucleoside synthesis and metabolism,
protein catabolic processes (Supplementary Fig. S10c). As expected,
adjusting for cell proportions decreased enrichment of immune cell
markers, most notably for neutrophils and monocytes (Supplemen-
tary Fig. S10d).

We alsoexaminedpathwayenrichmentofprimaryDEGsandDEGs
adjusted for cell proportions by disease severity by analyzing the
lowest (most functionally impaired) versus the highest (least func-
tionally impaired) quartile of ALSFRS-R scores. Overall, we found
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pathways linked to more severe disease reflected in lower ALSFRS-R
scoreswere related to neurodegeneration, immune dysregulation, and
metabolic stress (Supplementary Fig. S11), key ALS pathophysiological
processes.

Overall, enrichment analysis of the whole blood transcriptome
revealed ALS-relevant pathways beyond immune-related pathways.
Adjusting for cell proportions in blood further enriched these ALS
pathways and confirmed the presence of an ALS disease signature in
blood. Thus, we next sought to leverage the blood transcriptomic
dataset to identify potential drug candidates by drug perturbation
analysis.

Drug perturbation analysis of the blood transcriptome reveals
ALS therapeutic candidates
We launcheddrugperturbation analysis byfirst identifying “core genes”
most strongly linked to the disease process in relevant tissues (Fig. 1c,
iv). We identified early “core genes” by examining DEG overlap between
adjusted and primary analysis of our blood transcriptomic dataset with
induced pluripotent stem cell (iPSC)-derived neurons with TDP-43
knockdown, an established in vitro model of ALS (iPSC-neurons
hereon)34, modeling the disease process. We found 472 and 473 DEGs
from adjusted and primary blood datasets, respectively, overlapped
with iPSC-neurons (Fig. 6a); these overlapping DEGs were not the most
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significant or with the largest fold-change in the iPSC-neuron dataset
(Supplementary Fig. S12a). We found 1782 and 1864 DEGs in adjusted
and primary blood datasets, respectively, overlapped with postmortem
spinal cord35, relevant to end-stage ALS (Fig. 6b, Supplementary
Fig. S12b),which, again,were not among themost significant orwith the
largest fold-changes. Finally, we identified overall “core genes” between
blood, iPSC-neurons, and spinal cord, finding 282 and 288 DEGs in our
adjusted and primary datasets (Fig. 6c, d).

Equipped with the overall “core genes”, we next performed drug
perturbation analysis using the LINCSdatabase, a collection of 473,647
unique transcriptomic signatures across diverse cell types resulting
from 42,080 “perturbagens”, i.e., potential drug candidates. Our input
was the overall “core genes”, along with 150 up- and 150 down-
regulated DEGs from iPSC-neurons and spinal cord, with the greatest

fold-changes. Drug perturbation analysis identified the most, 3138
signatures, for cell proportions-adjusted “core genes”, followed by
2850 in primary “core genes” (Supplementary Data 8).

We focused on candidates that overlapped between overall “core
genes” (adjusted andprimary)with both iPSC-neurons and spinal cord,
of which eight out of nine reversed gene expression in the overall
disease course (Fig. 6e). These potential candidates spanned diverse
mechanisms of action, mutant EGFR inhibitor AZD-9291, MEK5/ERK5
inhibitor BIX-02189, multi-kinase inhibitor, including TANK-binding
kinase 1 (TBK1) BX-795, DNA synthesis inhibitor fludarabine, Bruton’s
tyrosine kinase (BTK) inhibitor ibrutinib, anti-adrenergic and anti-
dopaminergic trifluoperazine, semisynthetic doxorubicin analog val-
rubicin, and autophagy targeting XMD − 115036. These candidates
interacted with several genes, which, with few exceptions, e.g., TBK1,
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interestingly, do not have well-established roles in ALS (Fig. 6f). Thus,
in addition to potential therapeutic candidates, the analysis pin-
pointed new potentially disease-related genes.

Discussion
ALS remains difficult to recognize and lacks a disease-specific bio-
marker, leading to diagnostic delays4. Moreover, patients often lack
accurate information regarding their personalized anticipated disease
course. Generally, however, most ALS patients face a survival of only 2
to 4 years due to the lack of effective disease-modifying treatments22.
In the current study, we sought to address these unmet needs by
developing blood-based gene expression signatures of ALS risk and
survival along with therapeutic drug candidates using drug perturba-
tion analysis.

First, we capitalized on altered whole blood gene expression in
ALS with our overarching goal of developing diagnostic or clinical
status biomarkers. We identified 3640 DEGs in ALS cases versus con-
trols, confirming ALS-related altered gene expression in blood. As
anticipated, many DEGs were linked to the immune system, and there
were some, albeit primarily minor, male versus female differences,
possibly linked to sex differences in the immune system in ALS24–26.
Top DEGs clearly differentiated ALS cases from controls, many related
to ALS pathophysiology, spanning vesicular and endosomal traffick-
ing, autophagy, epigenetics, inflammation,muscle, and apoptosis. Our
DEGs substantially overlapped with 35 to 50% of published blood
transcriptomic datasets19,20; nevertheless, we had over 2800 unique
DEGs, likely resulting from detailed RNA-seq analysis of our large ALS
cohort.We then leveraged this highly detailed RNA-seq dataset to train
several classifiers. XGBoost, the best performing classifier, accurately
predicted case-control status with an AUC of 0.91.

We next refined XGBoost with more stringent criteria for input
DEGs, generating 27-, 29-, and 30-DEG gene panels and a combined 46-
DEG panel, all amenable to a future commercial multiplex-format PCR
array as an ALS biomarker panel. All panels performed very well, with
AUCs of 0.969 to 0.972, sensitivities of 93.2 to 94.2%, specificities of
86.0 to 87.9%, and accuracies of 91.1 to 91.2%. We validated our
XGBoost classifier externally on the Grima dataset21, with AUCs 0.872
to 0.894, underscoring proof-of-concept evidence as a potential
diagnostic tool.

Accurate prediction of case-control status in a fully independent
external testing cohort21 is a long-standing desired goal for eventual
clinical diagnosis. Pioneering work by Saris et al. first detected ALS-
specific gene expression profiles detected in blood37, prompting use
for ALS case-control classification. van Rheenen et al., from blood-
based gene microarray profiles, developed a classifier with an AUC of
0.90 from an internal test, which was not externally validated19. Re-
analysis of the dataset differentiated ALS cases from ALS mimics and
controls with 87% accuracy, 86% sensitivity, and 87% specificity20, but
still was not externally validated. Grima et al.21, based on expression of
20 genes, generated a classifier that distinguished sporadic ALS cases
fromcontrols internally with 0.829AUC, 78% accuracy, 79% sensitivity,
and 75% specificity21. However, in an independent external dataset,
performance dropped significantly to 0.647 AUC, 63% accuracy, 60%
sensitivity, and 67% specificity. Thus, to our knowledge, our classifier
outperforms externally compared to any literature reports and should
be further investigated as a potential ALS biomarker panel to improve
diagnostic accuracy and decrease diagnostic delay.

Secondly, we combined gene expression features with clinical
variables to predict overall survival, both internally and externally, in a
fully independent test cohort21. Including gene features improved
AUCs and, in the external dataset21, better differentiated shorter-,
intermediate-, and longer-surviving cases by median survival. More-
over, there was substantial overlap in cases classified as shorter-,
intermediate-, or longer-surviving between the gene-incorporating
stepwise and XGBoost models versus the clinical variables only

models. However, there were some differences, which would hold
important ramifications in a clinical scenario for patients regarding
their personal anticipated disease course. Currently, ALS prognosis is
based on disease progression, monitored clinically by ALSFRS-R,
including via its domain for respiratory function3. New scoring, scaling,
and staging tools have become available, but none are in widespread
clinical use3,38. In parallel, no biomarker has been clinically developed
for ALS prognosis, although baseline serum NfL level can correlate
with progression39 and has been adopted as a secondary outcome in
several recent clinical trials40–42. Reanalysis of the van Rheenen et al.19

dataset by Swindell et al. identified a 61-gene blood expression sig-
nature that could predict survival with a mean concordance
index of 0.60, which increased to 0.74 when they included covariates,
specifically onset segment, onset age, sex, and batch20; however,
this 61-gene signature was not externally validated. Therefore, our
externally validated survival predictionmodels that incorporate blood
gene expression features with clinical criteria are unique in the
literature.

Our last goal was to uncover ALS disease-relevant pathways in the
blood transcriptome and identify potential candidates by drug per-
turbation analysis. Although blood is not the primary affected tissue in
ALS, enrichment analysis detected several upregulatedKEGG terms for
neurodegenerative pathways, including “amyotrophic lateral sclero-
sis”, along with pathways related to ALS pathophysiology, such as
“oxidative phosphorylation”, “thermogenesis”33, and “proteasome”.
Although the “amyotrophic lateral sclerosis” pathway also included
genes related to mitochondrial energy production, proteasome, and
nucleocytoplasmic transport,whichenriched individually aspathways,
it also contained ALS genes, including C9orf72, TBK1, and CHMP2B.
Therefore, ALS-causing DEGs were also represented in the pathway
enrichment of our blood transcriptomic dataset. Adjusting for cell
proportions in blood further enhanced the ALS-relevant pathways. As
expected, several immune pathways were represented, independent
of cell proportion adjustments, while some disappeared and newly
appeared following adjustment. Our GO enrichment analysis also
highlighted ALS-relevant pathways, such as RNA processing and spli-
cing. Our results are aligned with van Rheenen et al., who identified
dysregulated RNA binding, intracellular transport, and protein trans-
port and localization as most characteristic of ALS19. Swindell et al.
similarly found altered RNA metabolism, along with immune system
pathways20, overlapping with Grima et al., reporting alteredmetabolic,
transcriptional regulation, immune response, and apoptotic
pathways21. Saris et al. identifiedmitochondrial dysfunction, related to
oxidative phosphorylation, as well as neurodegenerative and mRNA
processing pathways in blood from ALS cases versus controls37.

Our pathway analysis demonstrated that comprehensive ALS
signals are present in the blood of individuals with ALS. Indeed, our
whole blood DEGs in ALS cases versus controls overlapped with DEGs
from ALS iPSC-neurons and postmortem spinal cord. These “core
genes”underscore key shared features between blood and the primary
disease tissue, reflectedby enrichment ofALS-relevant pathways in our
blood gene expression dataset. We leveraged these “core genes” for a
drugperturbation analysis anddiscovered eight drugs that overlapped
with drug perturbation of iPSC-neurons and postmortem spinal cord
DEGs and reversed the disease transcriptomic signature.

Among the candidates was an FDA-approved drug, the phe-
nothiazine trifluoperazine, previously identified by a drug repurposing
effort in ALS43. Trifluoperazine is a typical antipsychotic primarily used
to treat schizophrenia, a neuropsychiatric disorder that may overlap
with ALS44. While there are reports that use of antipsychotics may
lower the risk of ALS45 and other age-related neurodegenerative
diseases46, some studies report no association47. Trifluoperazine is also
apotent allostericmodulatorof thehumanpurinergic P2X7 receptor48.
P2X7 receptor antagonism has been proposed as an ALS therapeutic
strategy by modulating neuroinflammation49.
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A second identified candidate was an FDA-approved irreversible
BTK inhibitor, ibrutinib, that blocks B-cell proliferation and survival
and is reported todelay symptomonset, reducemuscular atrophy, and
decrease pro-inflammatory brain cytokine production in SOD1G93A

mice50. Bosutinib, another tyrosine kinase inhibitor approved for
chronic myelogenous leukemia, was repurposed for ALS based on an
iPSC screen51. A small open-label, dose-escalation phase I trial found
the drug was safe and potentially effective in an ALS participant
subset52. Overall, several kinase inhibitors have or arebeing considered
for ALS53. Our drug perturbation also selected BX-795, an inhibitor of
TBK1 kinase, a known ALS gene linked to innate immunity, autophagy,
and cell cycle54. A recent Mendelian randomization of ALS genome-
wide association studies proposedTBK1 as adrug repurposing target55.

Some candidates had no known literature linked to ALS, including
AZD-9291, BIX-02189, fludarabine, valrubicin, and XMD− 115036, sug-
gesting future possible research avenues. Indeed, XMD-1150 may
potentially stimulate autophagy36, impaired inALS54, and inhibit LRRK2
(leucine-rich repeat kinase 2)56, also linked to autophagy in neurode-
generation, especially Parkinson’s disease57. Overall, our drug pertur-
bation analysis promotes a strategy for identifying therapeutic
candidates and supports further investigation into three drugs pre-
viously suggested as potential ALS therapies58,59.

Our study had several weaknesses. First, we did not include ALS
mimics or presymptomatic ALS mutation carriers. In a clinical sce-
nario, a diagnostic tool would need to differentiate patients with ALS
from patients without ALS that manifest similar symptoms, i.e., ALS
mimics. Moreover, a diagnostic tool capable of identifying imminent
phenoconversion to ALS in mutation carriers is lacking; however, our
study did not include presymptomatic mutation carriers. Second, we
faced the tissue issue, relying on blood as the most accessible sample;
however, blood harbors ALS-related changes in immune system
dysfunction24–26,60. To overcome this weakness, we adjusted our blood
transcriptomic analysis for cell proportions, which enhanced enrich-
ment of multiple ALS-relevant disease pathways, validating blood as a
viable biofluid. Third, the clinical criteria used in our predictionmodel
relied on onset segment, symptom onset age, and sex; however, this
list may not necessarily comprise all clinical variables that affect ALS
survival38. Moreover, AUCs formodels that incorporated gene features
were only numerically higher than AUCs for the clinical variables only
model; however, gene feature-based models maximized median sur-
vival differences, underscoring the added benefit of gene expression
data. Fourth, our drug perturbation analysis was based on overlapping
DEGs between our blood gene expression dataset with ALS iPSC-
neurons and spinal cord, covering only a fraction of the dysregulated
ALS transcriptome, so selected drugs may not necessarily modify the
disease process. Additionally, drug perturbation analysis was con-
ducted on averaged perturbagen-induced gene expression changes
across all database cell types, which may not reflect transcriptomic
changes the perturbagen would induce in blood or spinal cord tissue.
Finally, wehad an imbalance in sex andRNAprocessingmethods in our
cases versus controls, but we adjusted for these variables in our
analyses.

Despite limitations, our study also had numerous strengths. First,
we had a large sample size, especially of ALS cases, the largest to date
in blood transcriptomics. Our large sample size enabled sex-specific
analyses, relevant to sex differences in ALS24–26. Second, we used high-
coverage RNA-seq, and detected 22,332 genes encompassing long
non-coding RNAs and microRNAs, as well as protein-coding genes.
This contrasts with the published microarray data of only 9822
protein-coding genes20. Third, we used stringent criteria to identify
DEGs, relying on FDR <0.01 and absolute log2(fold-change)>0.1, and
filtered DEGs by rigorous criteria as input to train our classifiers.
Fourth, we externally validated our case-control classifiers and our
survival prediction models, demonstrating the robustness of our
findings. Finally, we leveraged immune phenotyping and DNAm data

to adjust our blood transcriptomicsdata for specific subpopulations of
blood cells, revealing intrinsic disease pathways and facilitating drug
perturbation analysis.

In conclusion, there is a real clinical need for better diagnostic
and prognostic tools in ALS to improve patient care. The breast
cancer PAM50 gene panel demonstrates the feasibility of gene
expression data for disease subtype classification and prognosis61.
Although no such gene expression panel is available for ALS diag-
nosis and/or prognosis, our findings strongly support the ability of
gene expression profiles from whole blood to differentiate ALS cases
from controls, to potentially predict survival, and to infer, by path-
way enrichment, relevant disease pathways and identify potential
drug candidates. Towards this goal, we developed an accurate,
externally validated blood-based gene expression signature panel for
ALS classification, underscoring potential clinical diagnostic use as a
biomarker. We also combined gene expression features with clinical
variables for survival prediction, highlighting potential prognostic
utility. Now that our study has shown blood transcriptomics can
accurately predict case-control status in external cohorts, we can
begin to assess potential utility for classification versus ALS mimics
and in presymptomatic ALS mutation carriers prior to pheno-
conversion. We envision a possible translation to a clinically viable
platform that could accelerate ALS diagnosis and provide patients,
based on their personalized gene expression profiles, with antici-
pated survival times.

Methods
Ethics statement
This study was conducted according to all relevant ethical regulations;
all participants were over 18 years of age and provided informed
consent in English. The University of Michigan Institutional Review
Board (IRBMEDHUM28826) granted ethical approval for this research.

Participants
The study recruited participants with ALS (n = 422) meeting the Gold
Coast definition of ALS during their clinical visit at the University of
Michigan Pranger ALS Clinic between 2011 and 2021. Control partici-
pants (n = 272) without ALS and without first- or second-degree rela-
tives with ALS were identified and recruited via a University of
Michigan research interest database, random address direct mailings,
and Meta/Facebook advertisements, and were compensated USD $50
via a check in the mail62–64. ALS participants did not receive monetary
compensation. Demographic information was collected from ALS and
control participants and disease characteristics were collected from
ALS participants, including age at onset and diagnosis, disease onset
segment, revised El Escorial criteria, and ALSFRS-R score (Table 1).
Gold Coast criteria were used to group participants as cases for clas-
sification purposes, while the revised El Escorial criteria were collected
as part of their diagnostic workup. Possible or suspected El Escorial
criteria at diagnosis did not affect case status prediction relative to
definite, probable, or probable, laboratory supported criteria (Sup-
plementary Fig. S13).

Sample collection and RNA-seq
Blood samples for RNA-seq were collected from participants with ALS
and controls into PAXgene tubes (catalog no. 762165, Qiagen, Ger-
mantown, MD), per manufacturer instructions. Blood samples were
frozen and stored at –80 °C until RNA extraction. RNA was extracted
from the PAXgene tubes using the PAXgene Blood miRNA Kit (catalog
no. 763134, Qiagen). RNA quality was evaluated by RNA integrity
number (RIN) using TapeStation (Agilent, Santa Clara, CA) and Qubit
RNA broad-range assay (catalog no. Q10211, Thermo Fisher Scientific,
Waltham, MA). Depending on the RIN, total RNA samples were further
processed either by ribosomal RNA (rRNA) depletion or messenger
RNA (mRNA) selection.
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rRNA depletion from samples. When total RNA samples (90 ng) met
the criteria RIn < 5.5 or DV200 in the range of 50 to ~75%, they were
depleted of rRNA using the NEBNext Globin & rRNA Depletion Kit
(Human/Mouse/Rat) (catalog no. E7750X, New England Biolabs, Ips-
wich, MA). This was the protocol adopted for 261 ALS and 126 control
samples. rRNA-depleted RNA samples were then fragmented for
5–10min based on RIN of the input RNA. Fragments were then copied
into first-strand cDNA by reverse transcription with random primers,
and 3’ ends were adenylated and ligated to adapters. The products
were amplified by 16 PCR cycles to generate the final cDNA library.
Library preparation was performed using xGen Broad-Range RNA
Library Preparation Kit (catalog no. 10010145, Integrated DNA Tech-
nologies, Coralville, IA) and xGen Normalase UDI Primers (catalog no.
10009795, 10009800, 10009811, 10009812, Integrated DNA Tech-
nologies). RNA-seq analysis adjusted for RNA processing method.

polyA selection of mRNA from samples. When total RNA samples
(90 ng) met the criteria RIn ≥ 5.5 and DV200> 75%, mRNAwas isolated
by polyA purification using the NEBNext Polya mRNA Magnetic Isola-
tion Module (catalog no. E7490L, New England Biolabs). This was the
protocol adopted for 161 ALS and 146 control samples. mRNA-purified
samples were then fragmented and copied into first-strand cDNA by
reverse transcription with random primers, and 3’ ends were adeny-
lated and ligated to adapters. The products were amplified by 16 PCR
cycles to generate the final cDNA library. Library preparation was
performed using xGen Broad-range RNA Library Prep (catalog no.
10010145, Integrated DNA Technologies), and xGen Normalase UDI
Primers (catalog no. 10009795, 10009800, 10009811, 10009812,
Integrated DNA Technologies). RNA-seq analysis adjusted for RNA
processing method.

The quality of all final libraries, both rRNA-depleted and mRNA-
purified, was assessed by Qubit dsDNA (Thermo Fisher Scientific) and
LabChip (PerkinElmer, Waltham, MA). Samples were pooled and
sequenced on an Illumina NovaSeq S4 using 150bp paired-end reads
(Illumina, San Diego, CA). BCL Convert Conversion Software v3.9.3
(Illumina) demultiplexed FASTQ files. RNA-seq was performed by the
University of Michigan Advanced Genomics Core.

RNA-seq data processing and quality control
Raw RNA-seq reads (FASTQ files) were trimmed in Cutadapt v2.3,
aligned to the human reference genome hg38 in STAR v2.5.3a, and
quantified in featureCounts v2.0.3 (using “-s 2” for reverse strand
reads). Rigorous RNA-seq quality control was implemented by FastQC
v0.11.9, RSeQC v5.01, and FastQ Screen v0.15.2, and results were
summarized with MultiQC v1.7. mRNA samples with fewer than 10
million reads aligned to non-globin genes were re-sequenced.
Expression of the X chromosome gene XIST and 49 male-specific Y
chromosome genes was analyzed to compare observed sex to recor-
ded sex65, filtering out five samples with discrepancies, which were
removed. Thirteen globin genes were filtered because they are highly
expressed in red blood cells, which are present in blood samples even
when nucleated cells (e.g., white blood cells) are the primary target of
analysis. Finally, genes with low expression, defined as fewer than five
raw read counts in over 50% of samples, and genes only present in one
library were excluded. Overall, this yielded 22,332 genes from
694 samples.

Identification of the relative abundance of different cell types in
blood (cell proportions)
When a disease alters immune cell levels, such as occurs in ALS24–26,30,
gene expression changes in whole blood transcriptomics can arise
secondary to changes in the relative abundance of the various immune
cell types, i.e., in cell proportions. Adjusting the whole blood tran-
scriptomic dataset for immune cell proportions, i.e., adjusting for gene
expression changes that arise merely from differences in immune cell

proportions, reveals intrinsic gene expression changes linked to the
disease process rather than only to immune cell levels. Herein, the
primary whole blood transcriptomics dataset (termed “primary”) was
employed for case-control and survival prediction, since these gene
expression changes only need to differentiate case from control and
shorter- versus longer-surviving cases, regardless of whether these
gene expression changes arise from altered immune cell levels or from
intrinsic biological processes. The whole blood transcriptomic dataset
adjusted for cell proportions (termed “adjusted”) was used for path-
way and drug perturbation analyses, since these methods require
assessment of intrinsic disease-related biological pathways.

Adjusting the whole blood transcriptomic dataset requires accu-
rate accounting of cell proportions. Cell proportions can be compu-
tationally inferred by deconvolution of RNA-seq data or deconvolution
of DNAm data. To identify the optimal approach in this dataset,
deconvolution by DNAm and RNA-seq was compared to immune cell
profiling by flow cytometry. These data were available for a substantial
proportion of this deeply phenotyped cohort; DNAm was previously
profiled by microarray in 428 ALS cases and 288 controls32, while
immune cell levels and activation states were previously profiled by
flow cytometry in 225 ALS cases and 119 controls24–26.

Cell type deconvolution using DNAm was conducted using the
FlowSorted.Blood.EPIC v1.4.1 R package66 for CD8 + T cells,
CD4 + T cells, NK cells, B cells, monocytes, and neutrophils. Cell type
deconvolution using RNA-seqwas conducted in BayesPrismv2.1.267 for
CD8 + T cells, CD4 +T cells, NK cells, B cells, monocytes, neutrophils,
and erythrocytes. Flow cytometry profiled CD8 + T cells, CD4 + T cells,
NK cells, monocytes, and neutrophils. Correlation of cell proportions
by DNAm and RNA-seq with cell proportions determined by flow
cytometry was performed using Pearson’s correlation analysis. Based
on the correlation results, the cell proportions estimated by DNAm
were used for differential gene expression analyses adjusted for cell
proportions.

Differential gene expression analysis
To improve the DEG analysis, unknown sources of variation in gene
expression, such as differences in library preparation, were first
eliminated68 by implementing amodified version of surrogate variable
analysis (SVA), a batch correction method69–71. SVA estimates the
principal components (PCs) after adjusting for biological variables
(case-control status, age, sex). However, SVA selects the top k factors
as the criteria for selecting PCs, while ourmodifiedmethod selects the
top k PCs based on an elbow plot (Supplementary Fig. S14a; max.
variance explained), excluding PCs that correlate with the main bio-
logical variable, i.e., case-control status. Indeed, after applying SVA,
which included surrogate variables in the DEG model, the residual
principal component analysis (PCA) plot still showed clustering based
on library preparation type (Supplementary Fig. S14b), indicating
remaining uncaptured unknown variance. However, when PCs were
carefully selected for the DEG model, the residual PCA plot did not
exhibit any differences resulting from library preparation types (Sup-
plementary Fig. S14c). PCs were carefully selected by correlation ana-
lysis using Pearson’s linear correlation and logistic regression adjusted
for all other model covariates. PC1 and PC3 significantly correlated
with case-control status in logistic regression (Bonferroni-adjusted p-
value < 0.05), so they were omitted from the DEGmodel. Gene counts
were normalized for library size in count per million (CPM), log2-
transformed, and normalized between samples by the trimmed mean
of M-values (TMM) normalization method in edgeR v4.2.1.

DEGs between ALS cases versus controls were identified with the
model y ~ group + age + sex + genetic_PCs1-4+RNA_PCs2-10 + batch +
library_type in the limma R package (v3.48.3; functions: voom, lmFit,
eBayes). This model controlled for variation in demographics (age,
sex) as well as technical variations due to library preparation, genetic
heterogeneity (the first four genetic PCs), and unknown variance
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(selected RNAPCs) (Supplementary Fig. S14d). DEGsmet the criteria of
absolute value of log2(fold-change)>0.1 (absLFC) and FDR <0.01. DEG
analysis for ALS cases versus controls was also performed stratified by
sex. DEGs identified by the model above, without adjusting for cell
proportions, were used as input features for classifiers predicting ALS
case status and survival.

DEGs between ALS cases versus controls adjusted for cell pro-
portions were identified with the model y ~ group + age + sex +CD8T
+Mono +NK+BCell +Neu+ genetic_PCs1-4 +RNA_PCs2,4-10 + batch +
library_type in the limma R package (v3.48.3; functions: voom, lmFit,
eBayes), where covariates CD8T through Neu represent cell type pro-
portions estimated by DNAm data. This model controlled for all the
variables included in the model that were not adjusted for cell pro-
portions, as well as for variation in cell proportions. Theproportions of
the different immune cells sum up to a constant, near 1, indicating
linear dependence among them. To address this, the CD4T proportion
was removed from the model due to a large variance-inflation factor.
Accounting for cell proportions ensures that DEGs and corresponding
pathway enrichment reflect disease-associated alterations in gene
activity rather than ALS-related changes in the numbers of immune
cells, i.e., the cell proportions.

Correlation analysis between RNA PCs and estimated cell pro-
portions (neutrophils, NKs, CD8T cells, monocytes, B cells) by Pearson
correlation identified seven PC–cell type pairs that met the criteria |
r | >0.25 andBonferroni-adjustedp <0.05 (Supplementary Fig. S15a, b).
Removing the PCs that correlated with cell type proportions (PC3, PC4,
& PC9) reintroduced batch effects between library preparation types
(Supplementary Fig. S15c); therefore, the original model was retained,
called the “primary” analysis, which accounted, in part only, for cell
proportions, in contrast to the analysis that adjusted for the remainder
of cell proportions (i.e., referred to as adjusted for cell proportions).
There was substantial overlap in DEGs for our primary analysis and
adjusted for cell proportions, but the twoDEGs analyses also identified
hundreds of unique up- and down-DEGs (Supplementary Fig. S16).

Gene expression signature for predicting ALS case status
To compare machine learning classifiers for this task, a random 70%
(n = 487 total with n = 296 ALS, n = 191 controls) of the total gene
expression dataset (n = 694) was used for 10-fold cross-validation
training with the remaining 30% held out for testing (n = 207 total with
n = 126 ALS, n = 81 controls). The same training and testing sets were
used across all seven machine learning algorithms to ensure compar-
ability. TMM-normalized log2CPM values were used as input for pre-
diction. Sevenmachine learning algorithms were compared: penalized
logistic regression with different regularization parameters, including
ridge (α =0, where α is the mixing parameter that determines the
balance between L1 and L2 regularization)72, least absolute shrinkage
and selection operator (LASSO) (α = 1)73, and elastic net (α = 0.5)74, L1/
275, smoothly clipped absolute deviation (SCAD)76, maximum concave
penalty (MCP)77, and extreme gradient boosting (XGBoost). These
classification algorithms were chosen because they are more robust
than deep learning for tabular data with our sample number.

Next, given the top performance of XGBoost, using 100% of RNA-
seq samples in the training dataset (n = 694 total of which n = 422 ALS,
n = 272 controls), the residuals of TMM-normalized log2CPM values
(adjusted for library type, batch, and technical PCs 2, 4, and 5) were
used to train an XGBoost classifier in Python packages xgboost v2.1.1,
scikit-learn v1.3.0, and kneed v0.8.5. Different sets of input genes,
which defined the universe of potential features, were tested and the
classifier was trained using 10-fold cross validation. Specifically,
FDR <0.01 and average log2 gene expression (AvExpr) were identified
as themost important criteria for filtering primaryDEGs touse as input
genes to train XGBoost models. Three different criteria, (i) FDR <0.01,
(ii) FDR <0.01 and AvExpr>0, and (iii) FDR <0.01 and AvExpr>2, were
tested for filtering DEGs, and 10-fold cross-validation training was

performed for each. Using each set of filtered DEGs as input, three
initial models were trained with a learning rate of 0.1, max depth 20,
lambda 0.0003, alpha 0.0003, and learning task set to binary classi-
fication by logistic regression, outputting probability. For feature
selection for each of the three models, based on the relative impor-
tance of each feature, we repeatedly fit the models with the same
hyperparameters by excluding the least important features in each
iteration (i.e., recursive feature elimination). By plotting the average
ROC AUC score from 10-fold cross-validation versus the number of
features in each model, the kneedle algorithm selected the best knee
point, corresponding to the final number of features in the candidate
gene classifiers. These three candidate classifiers [trained on (i)
FDR <0.01, (ii) FDR <0.01, AvExpr>0, (iii) FDR <0.01, AvExpr>2] were
further combined into one ensemble classifier based on averaged
prediction probabilities.

The external Grima et al. test dataset was downloaded from NCBI
Gene Expression Omnibus (GSE234297)21, containing RNA-seq of per-
ipheral blood from 86 ALS cases versus 48 matched controls. Genes
with >5 counts in >10 samples were retained. TMM-normalized
log2CPM values were adjusted for batch, RIN, and technical PCs 2 to
7 using the approach described above. The three XGBoost classifiers
and the ensemble classifier were tested on the external dataset and
were assessed by accuracy, sensitivity, specificity, and AUC.

Gene expression signature for predicting ALS survival
In our case-control classification models, feature selection was per-
formedonDEGs adjusted for age and sex andfiltered basedonaverage
expression. Slightly different pre-processing and filtering criteria were
employed to optimize the predictions for this case-only analysis. Low
expressed geneswerefiltered out using thefilterByExpr function in the
edgeR v4.2.1 Rpackage, and then furtherfilteredout average count per
million mapped reads (CPM) < 10 and CPM< 1 in >10% of the 422 ALS
samples. Only protein-coding genes also present in the external data-
set Grima et al.21 were retained, resulting in 5,449 genes for feature
selection. TMM-normalized (within ALS case samples) log2CPM values
were adjusted for library type, batch, and technical PCs 1 and 2 using
regression and subsequently used as input for prediction. Additionally,
clinical variables, including onset segment, symptom onset age, and
sex, were used for feature selection, selected based on shared data
availability between this study with the external test Grima cohort21.
Twomachine-learningmethods, stepwise selection andXGBoost, were
applied to select gene panels combined with clinical variables to pre-
dict survival, which were compared to a clinical variable-only model. A
log-rank testwas conducted for eachgene, using itsmedian expression
value to stratify ALS cases (n = 420with survival data) into high- versus
low-expression groups. This analysis, conducted without clinical vari-
ables, identified 575 significant genes that predicted survival (p-
value < 0.01).

Stepwise selection training. The stepwisemodel was trained on 100%
of the internal ALS dataset (n = 420) for survival analysis. To identify
input genes, first, weighted gene co-expression network analysis
(WGCNA)78 by WGCNA v1.73 R package was performed on the 575
genes, which established 15 clusters based on similarity in gene
expression, including Module 0, that contained genes that did not co-
express with genes in other modules. A soft threshold of 6 was set to
achieve a scale independence of 0.8 while ensuring that the adjacency
matrix exhibited relatively high average connectivity. To reduce mul-
ticollinearity in the 575 genes from the univariate log-rank model, we
selectively kept the top 10% hub genes ranked by connectivity within
each module as well as genes without highly correlated counterparts
(within WGCNAModule 0). This resulted in 82 WGCNA genes as input
for stepwise feature selection. Next, the stepwise Akaike information
criterion approach implemented in the MASS v7.3.60.279 R package
was used to further enhance feature selection for fitting the

Article https://doi.org/10.1038/s41467-025-64622-5

Nature Communications |         (2025) 16:9631 13

www.nature.com/naturecommunications


multivariate Cox proportional hazards model with both forward and
backward selection. Stepwise selected 18 gene features in addition to
the three clinical variables.

XGBoost training. TheXGBoost algorithm from the xgboost v0.1.080 R
package was trained on 100% of the internal ALS dataset (n = 420) for
survival analysis. A boosted tree model including clinical variables and
the 575 genes selected by the log-rank test (p-value < 0.01) was gen-
erated using the entire trainingdataset. A grid searchwasperformed in
the hyperparameter space, and the final model was trained with the
best hyperparameters, including the learning rate 0.1, max depth 6,
lambda 1, alpha 0.01, gamma 0.1, and learning task survival analysis
using a Cox proportional hazards model evaluated by the negative log
partial likelihood. The top 10 features based on their importance (gain)
in predicting survival risk were selected, which included 8 gene fea-
tures and 2 clinical variables.

Testing on the external dataset. The external Grima21 test dataset was
downloaded from NCBI Gene Expression Omnibus (GSE234297). The
RNA-seq raw read counts from 86 sporadic ALS cases were TMM-
normalized and the log2CPM values were adjusted for batch, RIN,
library size, and technical PCs 2 to 5 using regression and subsequently
used as input. Models constituted all clinical variables in the clinical
variables model (onset segment, symptom onset age, sex) and all
clinical variables plus the selected gene features in the stepwise
(18 selected genes) and XGBoost model (8 selected genes). Cox pro-
portional hazards models were fitted using the coxph function within
the survival v3.7.0 R package81 and the predict function calculated risk
scores for the internal and external test data. The timeROC v0.4 R
package82 evaluated the time-dependent ROC curves for the three
survival models to comprehensively assess the predictive accuracy of
survival models over time. AUCs of the ROC curves were calculated at
various timepoints (2, 3, 4, 5, 6, 7, 8 years) for prediction infive random
train-test splits of our internal dataset and in the Grima21 dataset to
compare the discriminative power of the models. The Kaplan-Meier
plotsweregenerated using the survminer v0.4.9Rpackage to visualize
the predicted survival probabilities over time for each model. C-index
of the different CoxPH models were compared using the compare
v1.3.2 R package.

Pathway analysis
Over-representation analysis was performed using a one-sided Fisher’s
exact test from the functions enrichKEGG, enricher, and enrichGO in
the clusterProfiler v4.12.2 R package on KEGG pathways, MSigDB
Hallmark gene sets, and GO terms. DEGs with FDR <0.01 and
absLFC>0.1 were used for ALS cases versus control comparisons in all
participants, and in sex-stratified analyses. KEGG pathways and Hall-
mark gene sets with FDR <0.05 were selected for visualization in dot
plots. GO terms with FDR <0.01 were clustered and visualized using
the EnrichmentMap v3.5.0 module in Cytoscape v3.10.0. Gene set
enrichment analysis was performed on participants in the lowest
quartile of ALSFRS-R (most functionally impaired) versus the highest
quartile of ALSFRS-R scores (least functionally impaired). –Log10(p-
value) x sign(log[fold-change]) was used as the statistic to rank the
gene list for inputs to gene set enrichment analysis,where p-values and
sign(logFC) were from primary DEGs and DEGs adjusted for cell type
proportions.

Drug perturbation analysis
DEGs were obtained from previous publications of human iPSC-
derived cortical-like neurons with TDP-43 knockdown (n = 3) versus
controls (n = 4)34 and postmortem spinal cord (214 ALS versus 57
controls)35, and examined for overlap with whole bloodDEGs (422 ALS
versus 272 controls) from this study, bothprimary and adjusted for cell
proportions. The same criteria were used for defining DEGs in all

datasets: FDR <0.01 and absLFC>0.1. Overlapping DEGs across the
three datasets were used as input for drug perturbation analysis. For
iPSC-neurons and postmortem spinal cord, the top 150 upregulated
and 150 downregulated DEGs (ranked by LFC) were used as input, the
maximum number of input DEGs allowed, per the clue.io platform.
Drug perturbation analysiswas performedusing the latest Touchstone
dataset from L1000 via the clue.io platform to identify candidate
compounds targeting pathways involved in ALS, using averaged per-
turbations across all available cell types83. Normalized connectivity
scores (norm_cs;−2 to 2), ameasure of the extent ofmatching between
input DEGs and database compounds, were calculated to assess
compound-DEG relationships, with positive scores indicating promo-
tive effects, negative scores indicating suppressive effects. Only com-
pounds with definedmechanisms of action (MOA ≠ “”), passing quality
control (qc_pass = 1), and FDR <0.01 were considered. This approach
identified high-confidence candidate compounds for further investi-
gation in ALS. R packages cmapR v1.21.0, igraph v2.1.4, and GGally
v2.2.1 were used for drug perturbation analysis and network
visualization.

qPCRvalidation. SelectDEGswere validated in an independent cohort
(n = 29 ALS cases, n = 27 controls) by qPCR. Participants providing
samples for the qPCR validation underwent the same recruitment,
enrollment, and consent as described earlier. RNA was isolated from
participant blood samples using the PAXGene miRNA kit (catalog no.
763134, Qiagen). cDNA was then generated from 500ng input RNA
using iScript cDNA Synthesis kit (catalog no. 1708890, Bio-Rad, Her-
cules, CA). qPCR was performed using TaqMan Gene Expression
Master Mix (catalog no. 4369016, Thermo Fisher Scientific) with Taq-
Man Gene Expression Assay primers for B2M (catalog no. 4331182,
Assay ID Hs00187842_m1), CAPZA1 (catalog no. 4331182, Assay ID
Hs04187789_g1), RPS18 (catalog no. 4331182, Assay ID Hs01375212_g1),
TPT1 (catalog no. 4331182, Assay ID Hs00372008_m1), and TNFSF10
(catalog no. 4331182 Assay ID Hs00921974_m1) using both GAPDH
(catalog no. 4331182 Assay ID Hs02786624_g1) and ACTB (catalog no.
4331182 Assay ID Hs01060665_g1) as endogenous controls, and data
were analyzed by the delta-delta CT method.

Statistics & reproducibility. This was a case-control study of periph-
eral whole blood by RNA-seq transcriptomics, with an additional pro-
spective cohort study of survival. The sample size was determined
based on budget constraints and available samples. The sample size is
the largest compared to all previously published studies of ALS parti-
cipant blood by RNA-seq. Sequencing of the sampleswas performed in
a blinded manner. Randomization was not a feature of the study
design. Expression of the X chromosome gene XIST and 49 male-
specific Y chromosome genes was analyzed to compare observed sex
to recorded sex, filtering out five samples with discrepancies, which
were removed. Otherwise, all samples were included. No replication
was undertaken; however, select differentially expressed genes
between ALS and control were validated by qPCR in an independent
cohort (n = 29 ALS cases, n = 27 controls). Case-control and survival
predictionmodelswere validated in an independent external ALS case-
control blood RNA-seq dataset.

Details of statistical and computational analyses were detailed in
their respective sections in “Differential gene expression analysis” and
“Pathway analysis”.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The RNA-seq data generated in this study have been deposited in the
European Genome-Phenome Archive (EGA) database under accession
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code EGAS50000001019. The RNA-seq data and associated clinical/
demographical data are available under restricted access for ALS
disease-specific research, and access can be obtained by submitting
requests through EGA and completing a Data Use Agreement that
outlines requirements for use. Requests are limited to not-for-profit
organizations. Source data are provided with this paper.

Code availability
Code has beenmade available at https://github.com/yzhao80/ALS_RNA.
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