مطالعه مرور نظام مند برررسی سطوح خونی و مایع مغزی نخاعی فاکتور رشد نوروتروفیک مشتق از مغز (BDNF) Brain-derived neurotrophic factor در بیماران مبتلا به پارکینسون و تغییرات آن پس از تمرینات منظم ورزشی در این بیماران

مطالعه مرور نظام مند برررسی سطوح خونی و مایع مغزی نخاعی فاکتور رشد نوروتروفیک مشتق از مغز (BDNF) Brain-derived neurotrophic factor در بیماران مبتلا به پارکینسون و تغییرات آن پس از تمرینات منظم ورزشی در این بیماران

3 4 1397

حذف
تک ستونه
حذف
ویرایشگر متن
بیماری پارکینسون  دومین بیماری نورودژنراتیو شایع در جهان است. شیوع این بیماری بین ۵۱–۱۷۷ در ده هزار نفر تخمین زده میشود.  براساس آمار شیوع پارکینسون و تعداد سالهای از دست رفته و مرگ در اثر این بیماری  ، به ویژه در کشور های پر درآمد، بین سالهای ۱۹۹۰-۲۰۱۵ افزایش داشته است. مهم ترین جنبه پاتوژنز بیماری پارکینسون از بین رفتن نورون های دوپامینرژیک ماده سیاه در مغز میانی می باشد که باعث از بین رفتن مهار در هسته های قاعده ای و علائم هیپرکینتیک و سفتی میشود. فاکتور رشد نوروتروفیک مشتق از مغز  (Brain-Derived Neurotrophic Factor) فراوان ترین نوروتروفین در مغز بالغین است و برای حیات نورون های دوپامینرژیک ضروری می باشد.  براساس مطالعات ، بیان این فاکتور در ماده سیاه بیماران مبتلا به پارکینسون کاهش دارد و جایگزینی آن در مطالعات حیوانی ، منجر به بقا این سلول ها و جلوگیری از بروز علائم پارکینسون میشود. سطوح BDNF سرم بلافاصله بعد از تمرین ورزشی افزایش می یابد که بهبود عملکرد شناختی بعد از ورزش را به افزایش این ماده نسبت داده اند. علاوه بر این سطوح خونی و مایع مغزی نخاعی BDNF  با بیان بافتی آن ارتباط مستقیم داشته و مطالعات مختلف به بررسی بیان محیطی BDNF در بیماران مبتلا به پارکینسون پرداخته اند که نتایج ضد و نقیضی در این باره ارائه کرده اند. در این مطالعه پایگاه های MEDLINE,  EMBASE  و  SCOPUS،  برای یافتن مقالان مرتبط با سطوح پلاسمایی یا سرم و یا مایع مغزی نخاعی BDNF در بیماری پارکینسون تعداد ۳۲ مقاله برای بررسی کیفی انتخاب شدند. ازین میان نتایج ۱۲ مطالعه وارد بررسی کمی شده و ۸ مطالعه برای متاآنالیز انتخاب شدند. نتایج متا آنالیز با نرم افزار Review Manager بر روی مجموع ۳۳۸ بیمار مبتلا به پارکینسون و ۴۴۳ کنترل سالم، نشان داد که بیان BDNF  در سرم بیماران مبتلا به پارکینسون در مقایسه با افراد سالم کاهش یافته است ( میانگین تفاوت :  -۲.۹۹ ng/mL ). این تفاوت هم در بیماران مبتلا به پارکینسون و افسردگی همزمان و هم در بیماران غیر افسرده مبتلا پارکینسون ، معنی دار بود که این تفاوت در بیماران افسرده بیشتر بود ( میانگین تفاوت : -۴.۸۳ ng/mL).  با این وجود تفاوتی بین بیماران مبتلا به پارکینسون افسرده و غیر افسرده وجود نداشت. مرور نظام مند سطوح BDNF  در مایع مغزی نخاعی در ۴ مطالعه موجود بیانگر کاهش سطح BDNF در  بیماران مبتلا به پارکینسون بود.  مرور ۴ مقاله مرتبط با آمادگی فیزیکی و فعالیت بدنی نشان داد،  اگر چه سطح خونی BDNF  با پیشرفت بیماری ومحدودیت قابلیت های فیزیکی افزایش می یابد، اما ورزش منظم منجر به افزایش سطوح خونی این فاکتور و بهبود قابلیت های فیزیکی بیماران میشود. نتایج این مطالعه نشان داد، بیان خونی BDNF  در بیماران مبتلا به پارکینسون، صرفنظر از طول دوره بیماری و وجود افسردگی همزمان ، کاهش یافته است و فعالیت ورزشی منظم میتواند منجر به بهبود عملکرد حرکتی و افزایش بیان BDNF در این بیماران شود.
 
 
كليد واژه ها : فاکتور رشد نوروتروفیک مشتق از مغز، بیماری پارکینسون، افسردگی، تمرینات ورزشی، شاخص هوئن و یار
مشخصات دانشجو:
نام:  فرزانه رحمانی  رشته تحصيلي: پزشکی عمومی  مقطع:    دکتری حرفه ای     گروه آموزشي   روانپزشکی      
Farzaneh.rahmani.usern@gmail.comپست الكترونيك دانشجو:
 
اساتيد راهنما و داور:
استاد راهنما : استاد دکتر وجیهه آقای ملایی ( بیمارستان روزبه) و استاد دکتر حسن افتخار اردبیلی (دانشکده بهداشت)  اساتيد داور: سرکار خانم دکتر محمدیان
زمان دفاع :
   روز سه شنبه  ۵/۴/۱۳۹۷  ساعت ۱۱ صبح
مكان دفاع به آدرس:
خیابان کارگر جنوبی ، نرسیده به میدان قزوین، بیمارستان روزبه
اطلاعات به زبان انگليسي
Title: Plasma and CSF Levels of Brain-Derived Neurotrophic Factor in Patients with Parkinson Disease and Changes in Relation to Exercise: A Systematic Review and Meta-Analysis
Abstract:
Brain-derived neurotrophic factor (BDNF) is an abundant neurotrophin in the adult brain. BDNF is downregulated in the substantia nigra of patients with Parkinson disease (PD). Serum BDNF levels might be used as a proxy for its central expression. Considering conflicting reports, we aimed to answer "How do serum/CSF levels of BDNF change in patients with PD?". We conducted a comprehensive search in MEDLINE, EMBASE and SCOPUS databases up to April 20th 2018. Thirty-two studies were selected for quantitative review. Five studies compared BDNF in serum of PD patients versus healthy controls (HC) and 3 studies provided BDNF levels in sera of non-depressed and depressed PD patients (NDPD and DPD). Review Manager (version 5.3) and Software version 3.0 (Borenstein, NH) were used for meta-analysis and meta-regressions. Mean difference (MD) was used for measurement of effect size. PD patients had reduced serum BDNF levels compared to HC (MD=[endif]-->2.99 ng/mL). MD in serum BDNF was highest in DPD patients compared to HC with an average [endif]-->4.83 ng/mL difference. There was no difference between DPD and NDPD patients in serum BDNF levels. Among co-variates that were eligible for meta-regression, age, sex (male %), and Hoehn and Yahr (H&Y) motor stage had significant positive associations with the effect size in the difference of serum BDNF between patients and HC. PD patients had reduced serum BDNF levels compared to HC, regardless of presence of co-morbid depression. Age, sex and H&Y stage can predict serum BDNF level difference between patients and controls.
 
Keywords:
Parkinson Disease; Brain-Derived Neurotrophic Factor; BDNF; Depression; Hoehn and Yahr; Serum
 
فهرست منابع و ماخذ فارسي و لاتين:
 
رفرنس های فارسی
 
اتکینسون، (1385) زمینه روانشناسی هیلگارد ،  ترجمه : براهنی / بیرشک/ بیک/زمانی / شه، تهران، انتشارات رشد.
برهانی نژاد و حمیدرضا، ویکتوریا مومن آبادی، سید حمید حسینی، طاهری منصوری، احمد صادقی،‌مهدی طرسکی (1393) وضعیت سلامت جسمی و روانی سالمندان شهر کرمان، مجله دانشگاه علوم پزشکی خراسان شمالی، سال ششم، شماره 4، صص 715-725.
فتحی محمد، دکتر فریده یغمایی، سیروس شهسواری (1387) بررسی فعالیت‌ةای زندگی روزانه سالمندان ساکن در سرای سالمندان کردستان، فصلنامه پرستاری و مامایی، شماره 62، ص 22.
مرتضوی سیده صالحه، حسن افتخار اردبیلی، سید رضا اسحاقی، رضا درعلی، مرضیه شاه سیاه، سعیده بطلانی (1390) تاثیر فعالیت بدنی منظم بر سلامت روان سالمندان شهر کرد، مجله دانشکده پزشکی اصفهان، شماره 161، ص 3.
مظلومی محمود آباد سید سعید، طاهره سلطانی،‌محمد علی مروتی،‌حسین فلاح زاده (1393) بررسی توانایی انجام فعالیت‌های روزانه و شیوع بیماری‌های مزمن در سالمندان شهر یزد، دو ماهنامه طلوع بهداشت، سال سیزدهم، شماره 3، صص 42-53.
معینی بابک، فرزاد جلیلیان، مجید براتی (1390) عوامل مرتبط با وضعیت استقلال عملکردی در فعالیت‌های جسمانی سالمندان،‌مجله پزشکی هرمزگان، شماره 60، ص 318.
 
 
رفرنس های انگلیسی
1.             WHO. Life expectancy and Healthy life expecancy: Data by WHO region
 2015 [Available from: http://apps.who.int/gho/data/view.main.SDG2016LEXREGv?lang=en.
2.             Nations U. Globally, population aged 60 or over is growing faster than all younger age groups 2017 [Available from: http://www.un.org/en/sections/issues-depth/ageing/.
3.             Searles Nielsen S, Warden MN, Camacho-Soto A, Willis AW, Wright BA, Racette BA. A predictive model to identify Parkinson disease from administrative claims data. Neurology. 2017.
4.             Global, regional, and national burden of neurological disorders during 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet Neurology. 2017;16(11):877-97.
5.             Roohani M, Ali Shahidi G, Miri S. Demographic study of parkinson's disease in Iran: Data on 1656 cases. Iranian Journal of Neurology. 2011;10(1-2):19-21.
6.             Weintraub D, Comella CL, Horn S. Parkinson's disease--Part 1: Pathophysiology, symptoms, burden, diagnosis, and assessment. The American journal of managed care. 2008;14(2 Suppl):S40-8.
7.             Hoglinger GU, Widmer HR, Spenger C, Meyer M, Seiler RW, Oertel WH, et al. Influence of time in culture and BDNF pretreatment on survival and function of grafted embryonic rat ventral mesencephalon in the 6-OHDA rat model of Parkinson's disease. Experimental neurology. 2001;167(1):148-57.
8.             Ahlskog JE. Parkinson's disease: Update on pharmacologic options to slow progression and treat symptoms. Hospital Formulary. 1992;27(2):146-63.
9.             Kowal SL, Dall TM, Chakrabarti R, Storm MV, Jain A. The current and projected economic burden of Parkinson's disease in the United States. Movement disorders : official journal of the Movement Disorder Society. 2013;28(3):311-8.
10.          Keranen T, Kaakkola S, Sotaniemi K, Laulumaa V, Haapaniemi T, Jolma T, et al. Economic burden and quality of life impairment increase with severity of PD. Parkinsonism & related disorders. 2003;9(3):163-8.
11.          LePen C, Wait S, Moutard-Martin F, Dujardin M, Ziegler M. Cost of illness and disease severity in a cohort of French patients with Parkinson's disease. PharmacoEconomics. 1999;16(1):59-69.
12.          West R. Parkinson’s disease. London: Office of Health Eco-
nomics. 1991.
13.          Dodel RC, Eggert KM, Singer MS, Eichhorn TE, Pogarell O, Oertel WH. Costs of drug treatment in Parkinson's disease. Movement disorders : official journal of the Movement Disorder Society. 1998;13(2):249-54.
14.          Hirtz D, Thurman DJ, Gwinn-Hardy K, Mohamed M, Chaudhuri AR, Zalutsky R. How common are the "common" neurologic disorders? Neurology. 2007;68(5):326-37.
15.          Sveinbjornsdottir S. The clinical symptoms of Parkinson's disease. Journal of neurochemistry. 2016;139 Suppl 1:318-24.
16.          Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392(6676):605-8.
17.          Johnson SJ, Diener MD, Kaltenboeck A, Birnbaum HG, Siderowf AD. An economic model of Parkinson's disease: implications for slowing progression in the United States. Movement disorders : official journal of the Movement Disorder Society. 2013;28(3):319-26.
18.          Baek JH, Whitfield D, Howlett D, Francis P, Bereczki E, Ballard C, et al. Unfolded protein response is activated in Lewy body dementias. Neuropathology and applied neurobiology. 2015.
19.          Braak H, Del Tredici K, Rüb U, de Vos RA, Steur ENJ, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of aging. 2003;24(2):197-211.
20.          Kingsbury AE, Bandopadhyay R, Silveira‐Moriyama L, Ayling H, Kallis C, Sterlacci W, et al. Brain stem pathology in Parkinson's disease: an evaluation of the Braak staging model. Movement disorders. 2010;25(15):2508-15.
21.          Lim JS, Shin SA, Lee JY, Nam H, Lee JY, Kim YK. Neural substrates of rapid eye movement sleep behavior disorder in Parkinson's disease. Parkinsonism & related disorders. 2016;23:31-6.
22.          Munhoz RP, Moro A, Silveira-Moriyama L, Teive HA. Non-motor signs in Parkinson's disease: a review. Arquivos de neuro-psiquiatria. 2015;73(5):454-62.
23.          Postuma RB, Berg D. Advances in markers of prodromal Parkinson disease. Nature reviews Neurology. 2016;12(11):622-34.
24.          Goldman SM. Environmental toxins and Parkinson's disease. Annual review of pharmacology and toxicology. 2014;54:141-64.
25.          Cannon JR, Tapias V, Na HM, Honick AS, Drolet RE, Greenamyre JT. A highly reproducible rotenone model of Parkinson's disease. Neurobiology of disease. 2009;34(2):279-90.
26.          Tatura R, Kraus T, Giese A, Arzberger T, Buchholz M, Höglinger G, et al. Parkinson's disease: <em>SNCA-</em>, <em>PARK2-, and LRRK2-</em> targeting microRNAs elevated in cingulate gyrus. Parkinsonism & related disorders.
27.          Jendrach M, Gispert S, Ricciardi F, Klinkenberg M, Schemm R, Auburger G. The mitochondrial kinase PINK1, stress response and Parkinson’s disease. Journal of Bioenergetics and Biomembranes. 2009;41(6):481-6.
28.          Klein C, Westenberger A. Genetics of Parkinson’s Disease. Cold Spring Harbor perspectives in medicine. 2012;2(1):a008888.
29.          Dovzhenok A, Rubchinsky LL. On the origin of tremor in Parkinson's disease. PloS one. 2012;7(7):e41598.
30.          van Mierlo TJ, Chung C, Foncke EM, Berendse HW, van den Heuvel OA. Depressive symptoms in Parkinson's disease are related to decreased hippocampus and amygdala volume. Movement disorders : official journal of the Movement Disorder Society. 2015;30(2):245-52.
31.          Carriere N, Lopes R, Defebvre L, Delmaire C, Dujardin K. Impaired corticostriatal connectivity in impulse control disorders in Parkinson disease. Neurology. 2015;84(21):2116-23.
32.          Ansari M, Rahmani F, Dolatshahi M, Pooyan A, Aarabi MH. Brain pathway differences between Parkinson's disease patients with and without REM sleep behavior disorder. Sleep & breathing = Schlaf & Atmung. 2016.
33.          Jankovic J, Aguilar LG. Current approaches to the treatment of Parkinson’s disease. Neuropsychiatric Disease and Treatment. 2008;4(4):743-57.
34.          Warren Olanow C, Kieburtz K, Rascol O, Poewe W, Schapira AH, Emre M, et al. Factors predictive of the development of Levodopa-induced dyskinesia and wearing-off in Parkinson's disease. Movement disorders : official journal of the Movement Disorder Society. 2013;28(8):1064-71.
35.          Boiko AN, Batysheva TT, Minaeva NG, Babina LA, Vdovichenko TV, Zhuravleva EY, et al. Use of the new levodopa agent Stalevo (levodopa/carbidopa/entacapone) in the treatment of Parkinson's disease in out-patient clinical practice (the START-M open trial). Neuroscience and behavioral physiology. 2008;38(9):933-6.
36.          Leibrock J, Lottspeich F, Hohn A, Hofer M, Hengerer B, Masiakowski P, et al. Molecular cloning and expression of brain-derived neurotrophic factor. 1989.
37.          Ernfors P, Lee K-F, Jaenisch R. Mice lacking brain-derived neurotrophic factor develop with sensory deficits. 1994.
38.          Korte M, Carroll P, Wolf E, Brem G, Thoenen H, Bonhoeffer T. Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proceedings of the National Academy of Sciences. 1995;92(19):8856-60.
39.          Nagahara AH, Merrill DA, Coppola G, Tsukada S, Schroeder BE, Shaked GM, et al. Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer's disease. Nature medicine. 2009;15(3):331-7.
40.          Shirayama Y, Chen ACH, Nakagawa S, Russell DS, Duman RS. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. The Journal of Neuroscience. 2002;22(8):3251-61.
41.          Siuciak JA, Lewis DR, Wiegand SJ, Lindsay RM. Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacology Biochemistry and Behavior. 1997;56(1):131-7.
42.          Autry AE, Monteggia LM. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacological reviews. 2012;64(2):238-58.
43.          Zuccato C, Cattaneo E. Brain-derived neurotrophic factor in neurodegenerative diseases. Nature Reviews Neurology. 2009;5(6):311-22.
44.          Wang Y, Liu H, Du XD, Zhang Y, Yin G, Zhang BS, et al. Association of low serum BDNF with depression in patients with Parkinson's disease. Parkinsonism & related disorders. 2017;41:73-8.
45.          Khalil H, Alomari MA, Khabour O, Al-Hieshan A, Bajwa JA. The Association Between Physical Activity With Cognitive Function and Brain Derived Neurotrophic Factor in People With Parkinson's Disease, A Pilot Study. Journal of aging and physical activity. 2017:1-24.
46.          Wang Y, Liu H, Zhang BS, Soares JC, Zhang XY. Low BDNF is associated with cognitive impairments in patients with Parkinson's disease. Parkinsonism & related disorders. 2016;29:66-71.
47.          Khalil H, Alomari MA, Khabour OF, Al-Hieshan A, Bajwa JA. Relationship of circulatory BDNF with cognitive deficits in people with Parkinson's disease. Journal of the neurological sciences. 2016;362:217-20.
48.          Fontanesi C, Kvint S, Frazzitta G, Bera R, Ferrazzoli D, Di Rocco A, et al. Intensive Rehabilitation Enhances Lymphocyte BDNF-TrkB Signaling in Patients With Parkinson's Disease. Neurorehabilitation and neural repair. 2016;30(5):411-8.
49.          Marusiak J, Zeligowska E, Mencel J, Kisiel-Sajewicz K, Majerczak J, Zoladz JA, et al. Interval training-induced alleviation of rigidity and hypertonia in patients with Parkinson's disease is accompanied by increased basal serum brain-derived neurotrophic factor. Journal of rehabilitation medicine. 2015;47(4):372-5.
50.          Segura M, Pedreno C, Obiols J, Taurines R, Pamias M, Grunblatt E, et al. Neurotrophin blood-based gene expression and social cognition analysis in patients with autism spectrum disorder. Neurogenetics. 2015;16(2):123-31.
51.          Siuda J, Patalong-Ogiewa M, Zmuda W, Targosz-Gajniak M, Niewiadomska E, Matuszek I, et al. Cognitive impairment and BDNF serum levels. Neurologia i neurochirurgia polska. 2017;51(1):24-32.
52.          Tuon T, Valvassori SS, Dal Pont GC, Paganini CS, Pozzi BG, Luciano TF, et al. Physical training prevents depressive symptoms and a decrease in brain-derived neurotrophic factor in Parkinson's disease. Brain research bulletin. 2014;108:106-12.
53.          Zoladz JA, Majerczak J, Zeligowska E, Mencel J, Jaskolski A, Jaskolska A, et al. Moderate-intensity interval training increases serum brain-derived neurotrophic factor level and decreases inflammation in Parkinson's disease patients. Journal of physiology and pharmacology : an official journal of the Polish Physiological Society. 2014;65(3):441-8.
54.          Frazzitta G, Maestri R, Ghilardi MF, Riboldazzi G, Perini M, Bertotti G, et al. Intensive rehabilitation increases BDNF serum levels in parkinsonian patients: a randomized study. Neurorehabilitation and neural repair. 2014;28(2):163-8.
55.          Chagas MH, Zuardi AW, Tumas V, Pena-Pereira MA, Sobreira ET, Bergamaschi MM, et al. Effects of cannabidiol in the treatment of patients with Parkinson's disease: an exploratory double-blind trial. Journal of psychopharmacology (Oxford, England). 2014;28(11):1088-98.
56.          Ventriglia M, Zanardini R, Bonomini C, Zanetti O, Volpe D, Pasqualetti P, et al. Serum brain-derived neurotrophic factor levels in different neurological diseases. BioMed research international. 2013;2013:901082.
57.          Xia Y, Wang HD, Ding Y, Kang B, Liu WG. [Parkinson's disease combined with depression treated with electroacupuncture and medication and its effect on serum BDNF]. Zhongguo zhen jiu = Chinese acupuncture & moxibustion. 2012;32(12):1071-4.
58.          Leverenz JB, Watson GS, Shofer J, Zabetian CP, Zhang J, Montine TJ. Cerebrospinal fluid biomarkers and cognitive performance in non-demented patients with Parkinson's disease. Parkinsonism & related disorders. 2011;17(1):61-4.
59.          Scalzo P, Kummer A, Bretas TL, Cardoso F, Teixeira AL. Serum levels of brain-derived neurotrophic factor correlate with motor impairment in Parkinson's disease. Journal of neurology. 2010;257(4):540-5.
60.          Palhagen S, Qi H, Martensson B, Walinder J, Granerus AK, Svenningsson P. Monoamines, BDNF, IL-6 and corticosterone in CSF in patients with Parkinson's disease and major depression. Journal of neurology. 2010;257(4):524-32.
61.          Paumier KL, Sortwell CE, Madhavan L, Terpstra B, Daley BF, Collier TJ. Tricyclic antidepressant treatment evokes regional changes in neurotrophic factors over time within the intact and degenerating nigrostriatal system. Experimental neurology. 2015;266:11-21.
62.          Ricci V, Pomponi M, Martinotti G, Bentivoglio A, Loria G, Bernardini S, et al. Antidepressant treatment restores brain-derived neurotrophic factor serum levels and ameliorates motor function in Parkinson disease patients. Journal of clinical psychopharmacology. 2010;30(6):751-3.
63.          Teixeira AL, Barbosa IG, Diniz BS, Kummer A. Circulating levels of brain-derived neurotrophic factor: correlation with mood, cognition and motor function. Biomarkers in medicine. 2010;4(6):871-87.
64.          Chen CM, Chen IC, Chang KH, Chen YC, Lyu RK, Liu YT, et al. Nuclear receptor NR4A2 IVS6 +18insG and brain derived neurotrophic factor (BDNF) V66M polymorphisms and risk of Taiwanese Parkinson's disease. American journal of medical genetics Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics. 2007;144b(4):458-62.
65.          Nagatsu T, Sawada M. Biochemistry of postmortem brains in Parkinson's disease: historical overview and future prospects. Journal of neural transmission Supplementum. 2007(72):113-20.
66.          Hong CJ, Liu HC, Liu TY, Lin CH, Cheng CY, Tsai SJ. Brain-derived neurotrophic factor (BDNF) Val66Met polymorphisms in Parkinson's disease and age of onset. Neuroscience letters. 2003;353(1):75-7.
67.          Murer MG, Yan Q, Raisman-Vozari R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer's disease and Parkinson's disease. Progress in neurobiology. 2001;63(1):71-124.
68.          Nagatsu T, Mogi M, Ichinose H, Togari A. Changes in cytokines and neurotrophins in Parkinson's disease. Journal of neural transmission Supplementum. 2000(60):277-90.
69.          Howells DW, Porritt MJ, Wong JY, Batchelor PE, Kalnins R, Hughes AJ, et al. Reduced BDNF mRNA expression in the Parkinson's disease substantia nigra. Experimental neurology. 2000;166(1):127-35.
70.          Siegel GJ, Chauhan NB. Neurotrophic factors in Alzheimer's and Parkinson's disease brain. Brain research Brain research reviews. 2000;33(2-3):199-227.
71.          Parain K, Murer MG, Yan Q, Faucheux B, Agid Y, Hirsch E, et al. Reduced expression of brain-derived neurotrophic factor protein in Parkinson's disease substantia nigra. Neuroreport. 1999;10(3):557-61.
72.          Piepmeier AT, Etnier JL. Brain-derived neurotrophic factor (BDNF) as a potential mechanism of the effects of acute exercise on cognitive performance. Journal of Sport and Health Science. 2015;4(1):14-23.
73.          Campos C, Rocha NB, Lattari E, Paes F, Nardi AE, Machado S. Exercise-induced neuroprotective effects on neurodegenerative diseases: the key role of trophic factors. Expert Rev Neurother. 2016;16(6):723-34.
74.          Oguh O, Eisenstein A, Kwasny M, Simuni T. Back to the basics: regular exercise matters in parkinson's disease: results from the National Parkinson Foundation QII registry study. Parkinsonism & related disorders. 2014;20(11):1221-5.
75.          Hyman C, Hofer M, Barde Y-A, Juhasz M, Yancopoulos GD, Squinto SP, et al. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature. 1991;350(6315):230-2.
76.          Yoshimoto Y, Lin Q, Collier TJ, Frim DM, Breakefield XO, Bohn MC. Astrocytes retrovirally transduced with BDNF elicit behavioral improvement in a rat model of Parkinson's disease. Brain Res. 1995;691(1-2):25-36.
77.          Guerini FR, Beghi E, Riboldazzi G, Zangaglia R, Pianezzola C, Bono G, et al. BDNF Val66Met polymorphism is associated with cognitive impairment in Italian patients with Parkinson's disease. European journal of neurology. 2009;16(11):1240-5.
78.          Bialecka M, Kurzawski M, Roszmann A, Robowski P, Sitek EJ, Honczarenko K, et al. BDNF G196A (Val66Met) polymorphism associated with cognitive impairment in Parkinson's disease. Neuroscience letters. 2014;561:86-90.
79.          Altmann V, Schumacher-Schuh AF, Rieck M, Callegari-Jacques SM, Rieder CR, Hutz MH. Val66Met BDNF polymorphism is associated with Parkinson's disease cognitive impairment. Neuroscience letters. 2016;615:88-91.
80.          Martin de Pablos A, Garcia-Moreno JM, Fernandez E. Does the Cerebrospinal Fluid Reflect Altered Redox State But Not Neurotrophic Support Loss in Parkinson's Disease? Antioxidants & redox signaling. 2015;23(11):893-8.
81.          Mogi M, Togari A, Kondo T, Mizuno Y, Komure O, Kuno S, et al. Brain-derived growth factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson's disease. Neuroscience letters. 1999;270(1):45-8.
82.          Salehi Z, Mashayekhi F. Brain-derived neurotrophic factor concentrations in the cerebrospinal fluid of patients with Parkinson's disease. Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia. 2009;16(1):90-3.
83.          Khalil H, Alomari MA, Khabour O, Al-Hieshan A, Bajwa JA. The Association Between Physical Activity With Cognitive Function and Brain-Derived Neurotrophic Factor in People With Parkinson's Disease: A Pilot Study. J Aging Phys Act. 2017;25(4):646-52.
84.          Moher D, Liberati A, Tetzlaff J, Altman DG, Prisma G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS medicine. 2009;6(7):e1000097.
85.          Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. European journal of epidemiology. 2010;25(9):603-5.
86.          Angelucci F, Peppe A, Carlesimo GA, Serafini F, Zabberoni S, Barban F, et al. A pilot study on the effect of cognitive training on BDNF serum levels in individuals with Parkinson’s disease. Frontiers in human neuroscience. 2015;9(MAR).
87.          Costa A, Peppe A, Carlesimo GA, Zabberoni S, Scalici F, Caltagirone C, et al. Brain-derived neurotrophic factor serum levels correlate with cognitive performance in Parkinson’s disease patients with mild cognitive impairment. Front Behav Neurosci. 2015;9.
88.          Siuda J, Patalong-Ogiewa M, Żmuda W, Targosz-Gajniak M, Niewiadomska E, Matuszek I, et al. Cognitive impairment and BDNF serum levels. Neurologia i neurochirurgia polska. 2017;51(1):24-32.
89.          Campos C, Rocha NBF, Lattari E, Paes F, Nardi AE, Machado S. Exercise-induced neuroprotective effects on neurodegenerative diseases: the key role of trophic factors. Expert Review of Neurotherapeutics. 2016;16(6):723-34.
90.          Siuda J, Patalong-Ogiewa M, Zmuda W, Targosz-Gajniak M, Niewiadomska E, Matuszek I, et al. Cognitive impairment and BDNF serum levels. Neurologia i neurochirurgia polska. 2017;51(1):24-32.
91.          Porritt MJ, Batchelor PE, Howells DW. Inhibiting BDNF expression by antisense oligonucleotide infusion causes loss of nigral dopaminergic neurons. Experimental neurology. 2005;192(1):226-34.
92.          Harward SC, Hedrick NG, Hall CE, Parra-Bueno P, Milner TA, Pan E, et al. Autocrine BDNF-TrkB signalling within a single dendritic spine. Nature. 2016;538(7623):99-103.
93.          Nagahara AH, Tuszynski MH. Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nature reviews Drug discovery. 2011;10(3):209-19.
94.          Mogi M, Togari A, Kondo T, Mizuno Y, Komure O, Kuno S, et al. Brain-derived growth factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson's disease. Neuroscience letters. 1999;270(1):45-8.
95.          Branchi I, D'Andrea I, Armida M, Carnevale D, Ajmone-Cat MA, Pezzola A, et al. Striatal 6-OHDA lesion in mice: Investigating early neurochemical changes underlying Parkinson's disease. Behavioural brain research. 2010;208(1):137-43.
96.          Baydyuk M, Xu B. BDNF signaling and survival of striatal neurons. Frontiers in cellular neuroscience. 2014;8.
97.          Baquet ZC, Gorski JA, Jones KR. Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2004;24(17):4250-8.
98.          Besusso D, Geibel M, Kramer D, Schneider T, Pendolino V, Picconi B, et al. BDNF–TrkB signaling in striatopallidal neurons controls inhibition of locomotor behavior. Nat Commun.4.
99.          Ziebell M, Khalid U, Klein AB, Aznar S, Thomsen G, Jensen P, et al. Striatal dopamine transporter binding correlates with serum BDNF levels in patients with striatal dopaminergic neurodegeneration. Neurobiology of aging. 2012;33(2):428.e1-5.
100.        Klein AB, Williamson R, Santini MA, Clemmensen C, Ettrup A, Rios M, et al. Blood BDNF concentrations reflect brain-tissue BDNF levels across species. The international journal of neuropsychopharmacology. 2011;14(3):347-53.
101.        Quesseveur G, David DJ, Gaillard MC, Pla P, Wu MV, Nguyen HT, et al. BDNF overexpression in mouse hippocampal astrocytes promotes local neurogenesis and elicits anxiolytic-like activities. Transl Psychiatry. 2013;3:e253.
102.        Karege F, Schwald M, Cisse M. Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neuroscience letters. 2002;328(3):261-4.
103.        Momose Y, Murata M, Kobayashi K, Tachikawa M, Nakabayashi Y, Kanazawa I, et al. Association studies of multiple candidate genes for Parkinson's disease using single nucleotide polymorphisms. Annals of neurology. 2002;51(1):133-6.
104.        Dai L, Wang D, Meng H, Zhang K, Fu L, Wu Y, et al. Association between the BDNF G196A and C270T polymorphisms and Parkinson's disease: a meta-analysis. The International journal of neuroscience. 2013;123(10):675-83.
105.        Lee YH, Song GG. BDNF 196 G/A and 270 C/T Polymorphisms and Susceptibility to Parkinson's Disease: A Meta-Analysis. Journal of motor behavior. 2014;46(1):59-66.
106.        Gómez-Garre P, Huertas-Fernández I, Cáceres-Redondo MT, Alonso-Canovas A, Bernal-Bernal I, Blanco-Ollero A, et al. BDNF Val66Met polymorphism in primary adult-onset dystonia: A case-control study and meta-analysis. Movement Disorders. 2014;29(8):1083-6.
107.        Szuhany KL, Bugatti M, Otto MW. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. Journal of psychiatric research. 2015;60:56-64.
108.        Phillips C. Brain-Derived Neurotrophic Factor, Depression, and Physical Activity: Making the Neuroplastic Connection. Neural Plasticity. 2017;2017.
109.        de Assis GG, de Almondes KM. Exercise-dependent BDNF as a Modulatory Factor for the Executive Processing of Individuals in Course of Cognitive Decline. A Systematic Review. Front Psychol. 2017;8:584.
110.        Etnier JL, Labban JD, Karper WB, Wideman L, Piepmeier AT, Shih CH, et al. Innovative Research Design Exploring the Effects of Physical Activity and Genetics on Cognitive Performance in Community-Based Older Adults. J Aging Phys Act. 2015;23(4):559-68.
111.        Gerecke KM. Exercise Does Not Protect against MPTP-Induced Neurotoxicity in BDNF Happloinsufficent Mice. 2012;7(8).
112.        Ieraci A, Madaio AI, Mallei A, Lee FS, Popoli M. Brain-Derived Neurotrophic Factor Val66Met Human Polymorphism Impairs the Beneficial Exercise-Induced Neurobiological Changes in Mice. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 2016;41(13):3070-9.
113.        Kishi T, Yoshimura R, Ikuta T, Iwata N. Brain-Derived Neurotrophic Factor and Major Depressive Disorder: Evidence from Meta-Analyses. Front Psychiatry. 2017;8.
114.        Vezoli J, Dzahini K, Costes N, Wilson CR, Fifel K, Cooper HM, et al. Increased DAT binding in the early stage of the dopaminergic lesion: a longitudinal [11C]PE2I binding study in the MPTP-monkey. NeuroImage. 2014;102 Pt 2:249-61.
115.        Kreinin A, Lisson S, Nesher E, Schneider J, Bergman J, Farhat K, et al. Blood BDNF level is gender specific in severe depression. PloS one. 2015;10(5):e0127643.
116.        de Azevedo Cardoso T, Mondin TC, Wiener CD, Marques MB, Fucolo Bde A, Pinheiro RT, et al. Neurotrophic factors, clinical features and gender differences in depression. Neurochemical research. 2014;39(8):1571-8.
117.        Foltynie T, Lewis SG, Goldberg TE, Blackwell AD, Kolachana BS, Weinberger DR, et al. The BDNF Val66Met polymorphism has a gender specific influence on planning ability in Parkinson's disease. Journal of neurology. 2005;252(7):833-8.
118.        Forti LN, Van Roie E, Njemini R, Coudyzer W, Beyer I, Delecluse C, et al. Dose-and gender-specific effects of resistance training on circulating levels of brain derived neurotrophic factor (BDNF) in community-dwelling older adults. Experimental gerontology. 2015;70:144-9.
119.        Paumier KL, Sortwell CE, Madhavan L, Terpstra B, Celano SL, Green JJ, et al. Chronic amitriptyline treatment attenuates nigrostriatal degeneration and significantly alters trophic support in a rat model of parkinsonism. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 2015;40(4):874-83.
120.        Zhao Q, Cai D, Bai Y. Selegiline rescues gait deficits and the loss of dopaminergic neurons in a subacute MPTP mouse model of Parkinson's disease. International journal of molecular medicine. 2013;32(4):883-91.
121.        Bustos G, Abarca J, Bustos V, Riquelme E, Noriega V, Moya C, et al. NMDA receptors mediate an early up-regulation of brain-derived neurotrophic factor expression in substantia nigra in a rat model of presymptomatic Parkinson's disease. Journal of neuroscience research. 2009;87(10):2308-18.
122.        Patil SP, Jain PD, Ghumatkar PJ, Tambe R, Sathaye S. Neuroprotective effect of metformin in MPTP-induced Parkinson's disease in mice. Neuroscience. 2014;277:747-54.
123.        Okazawa H, Murata M, Watanabe M, Kamei M, Kanazawa I. Dopaminergic stimulation up-regulates the in vivo expression of brain-derived neurotrophic factor (BDNF) in the striatum. FEBS letters. 1992;313(2):138-42.
124.        Amadio P, Sandrini L, Ieraci A, Tremoli E, Barbieri SS. Effect of Clotting Duration and Temperature on BDNF Measurement in Human Serum. International Journal of Molecular Sciences. 2017;18(9).
125.         Polacchini A, Metelli G, Francavilla R, Baj G, Florean M, Mascaretti LG, et al. A method for reproducible measurements of serum BDNF: comparison of
 
 
مشخصات مقاله:(در صورتي كه مقاله اي از پايان نامه چاپ يا پذيرش شده است )
1. Brain-Derived Neurotrophic Factor Role in Autism Remains Elusive: A Flashback on the Route That Has Brought Us Here
Journal: Acta Medica Iranica
Farzaneh Rahmani, and Nima Rezaei
 
2. Plasma Levels of Brain-Derived Neurotrophic Factor in Patients with Parkinson Disease: A Systematic Review and Meta-Analysis
Journal: Molecular Neurobiology
Farzaneh Rahmani1,2, Amene Saghazadeh3, Maryam Rahmani1, Antonio L. Teixeira4,5, Nima Rezaei6,7,8, Vajiheh Aghamollaei9*, and Hassan Eftekhar Ardebili10

نظرات

نظر

captcha

لیست نظرات

5/5 0 0 0